

Contents
Practical Core Data: Amodern guide to the Core Data framework 6

Chapter Overview 8
Chapter 1 - Taking your first steps with Core Data 8
Chapter 2 - Understanding Core Data’s building blocks 8
Chapter 3 - Defining entities using the model editor 8
Chapter 4 - Fetching and displaying data from a Core Data store 9
Chapter 5 - Using Core Data in a multithreaded environment 9
Chapter 6 - Sharing a Core Data store with apps and extensions 10
Chapter 7 - Synchronizing your store with a remote data source 10
Chapter 8 - Synchronizing your store with CloudKit 10
Chapter 9 - Updating your data model and performing migrations 11
Chapter 10 - Debugging and profiling your Core Data implementation 11
Chapter 11 - Using Core Data in your unit tests . 11
Chapter 12 - Where to go from here? . 12

Chapter 1 - Taking your first steps with Core Data 13
Creating a project that uses Core Data . 13
Creating an NSPersistentContainer and loading your data model 17
Defining a simple Core Data entity . 21
Adding new records to a Core Data store . 24
Retrieving records from your store . 28
Modifying and deleting records . 30
In Summary . 33

Chapter 2 - Understanding Core Data’s building blocks 34
Breaking down the persistent container . 34

Understanding the managed object model 37
Understanding the persistent store coordinator 39
Diving deeper into managed object contexts 40

Exploring Core Data’s underlying storage . 42
In Summary . 44

Practical Core Data

Chapter 3 - Defining entities using themodel editor 45
Defining entities and their properties in the model editor 45
Adding properties with arbitrary types to your model 53
Writing and generating NSManagedObject subclasses 60

Using the Class definition Codegen option 60
Using the Category/Extension Codegen option 63
Using the Manual/None Codegen option . 64

Managing relationships . 66
Understanding Core Data’s di�erent relationships 66
Setting up a relationship in Core Data’s model editor 67

Using fetched properties . 73
Understanding abstract entities . 75
In Summary . 77

Chapter 4 - Fetching and displaying data from a Core Data store 79
Understanding how Core Data executes a fetch request 79

Exploring Core Data’s faulting behavior . 81
Filtering and sorting results with Predicates and Sort Descriptors 84

Fetching data using NSFetchedResultsController 91
Using a fetched results controller in a UIKit app 92
Using a fetched results controller in Swi�UI 103
Using @FetchRequest to replace fetched results controller in Swi�UI 107
Using SectionedFetchRequest to fetch sectioned data in Swi�UI 109

Building a filter screen with Swi�UI’s @FetchRequest and dynamic predicates . . . 115
In Summary . 119

Chapter 5 - Using Core Data in amultithreaded environment 120
Understanding Core Data’s multithreading model 121
Passing managed objects between contexts . 128
Understanding and using child contexts . 135
Responding to changes in another managed object context 144
Understanding Core Data’s query generations . 152
In Summary . 158

Donny Wals 3

Practical Core Data

Chapter 6 - Sharing a Core Data store with apps and extensions 160
Setting your app up for data sharing with App Groups 160

Enabling App Groups for your app or extension 161
Configuring your persistent container for data sharing 162
Migrating an existing SQLite store to your App Group 164

E�iciently using a shared Core Data store . 169
Understanding why batch requests don’t trigger notifications 169
Getting started with persistent history tracking 173
Using persistent history tracking with multiple apps and extensions 182

In Summary . 189

Chapter 7 - Synchronizing your store with a remote data source 191
Using a remote data source to populate a local store 192

Using a JSON response to populate a Core Data store 193
Improving your data import with batch inserts 200
Performing incremental updates based on remote data 205

Synchronizing local changes to a remote store . 211
Deciding on a synchronization strategy . 212
Implementing your synchronization strategy 213

In Summary . 231

Chapter 8 - Synchronizing your store with CloudKit 232
Preparing your application for CloudKit synchronization 233

Updating your code with NSPersistentCloudKitContainer 234
Updating your project’s capabilities . 236
Seeing your persistent CloudKit container in action 238
Modeling your entities for CloudKit . 241

Exploring the iCloud dashboard . 243
Taking a look at your CloudKit Schema . 246
Understanding how persistent CloudKit container handles relationships . . . 248

Configuring which entities are synchronized using model configurations 251
Using fetch properties to establish a relationship between entities in di�erent

stores . 251
Creating and using separate model configurations 255

Donny Wals 4

Practical Core Data

Adding data to a public CloudKit store . 258
Setting up amodel configuration for the public database 258
Updating the CloudKit schema for the public database 260
Understanding the di�erences between the private and public database . . . 261

Understanding CloudKit’s conflict resolution . 263
Understanding CloudKit’s migration limitations 264
In Summary . 270

Chapter 9 - Updating your datamodel and performingmigrations 272
Understanding Core Data migration types . 272
Adding a newmodel version . 274
Performing a lightweight migration . 279
Defining a model map for your migration . 281
Writing a custommigration policy . 288
Performing a custom step-by-step migration . 295
Writing tests for your step-by-step migrations . 313

Obtain SQLite files from devices and simulators 314
Adding a test target and verifying a migration 318

In Summary . 325

Chapter 10 - Debugging and profiling your Core Data implementation 326
Measuring and improving performance with Instruments 326
Peeking under the hood with launch arguments 345
Investigating the performance of NSFetchedResultsController with di�able data

source snapshots . 349
In Summary . 361

Chapter 11 - Using Core Data in your unit tests 363
Setting up an in-memory SQLite store . 363
Properly loading your managed object model . 368
In Summary . 370

Chapter 12 - Where to go from here 372

Donny Wals 5

Practical Core Data

Practical Core Data: Amodern guide to
the Core Data framework
Core Data is a framework that I used in my very first iOS project. It was an application that I
had to create as a part of my graduation internship in early 2014, and it was the subject of my
college thesis. The project I worked on was part of a campaign for a big-name brand. They
wanted to promote their car-focused air-freshener.

The campaign involved a group of people, a car, and a whole bunch of smelly challenges that
they had to complete. The premise was that the car would smell fresh, no matter what.

My job was to figure out a way for the production team to take snapshots of the team in the
car automatically, and remotely so they could be published on social media or used as part of
the campaign in other ways.

Mydesign involved two iPhones thatwould bemounted in the car to take pictures. The phones
were connected to a webserver using a socket connection, and the production team used an
iPad to configure and use the phone cameras. Since internet connectionwould likely be spotty
during the trip, every captured picture was stored on the phone using Core Data along with
somemetadata like the current location of the car (some of the pictures were supposed to
show up on amap). The photos were kept in the store until they were uploaded and then they
were wiped from the device to save space because the pictures didn’t really have a purpose
on the device anymore once they were uploaded.

This project wasn’t terribly complicated, and Core Data worked absolutely fine for this
project.

It didn’t take long a�er that initial Core Data experience forme to discover some of Core Data’s
rough edges involvingmultithreading and havingmultiple managed object contexts. I bought
the Core Data book from objc.io at some point and that book taught me a lot about Core Data,
and it helpedme understand some of Core Data’s details much better.

Not long a�er that, Apple introduced NSPersistentContainerwith iOS 10. It was imme-
diately clear to me that Apple was putting significant e�ort into making Core Data easier to
work with. In the iOS versions a�er that, Apple added improvement a�er improvement but
somehow there weren’t a lot of people writing about Core Data anymore. I think Core Data
has had a tough time losing that bad reputation from its earlier days.

Donny Wals 6

Practical Core Data

In this book, I hope to show you that Core Data isn’t as rough as it used to be. In fact, I find
Core Data quite pleasant to work with nowadays, and I hope that my enthusiasmwill spark
some enthusiasm in you as well. Of course, Core Data isn’t always easy to work with. That’s
another part of why I wrote this book. I want to provide you with a solid foundation that helps
you understand, and use, Core Data in modern applications. Both in Swi�UI, and in UIKit.

This book has been a long time in the making, and if it wasn’t for my wife Dorien, it probably
would have takenme even longer. Her ongoing support and understanding throughout the
writing process has been amazing. I owe her a bunch of date-nights to make up for all the
time I’ve spent cooped up in my o�ice.

I want to thank everybody that has provided feedback on the pre-release version of this book
that I released a few weeks before releasing the full book. I have received tons of input and
it’s been incredibly useful. I especially want to thank David DeWolfe for providing me with an
extensive list of corrections and improvementswith regards to spelling on both the pre-release
and the final version of the book. I’m truly grateful for the work you’ve put in to help me out,
David.

And of course, I want to extend a big thanks to you, the reader. Without you, this bookwouldn’t
exist at all. So thank you for buying this book and supporting my work. It means a ton to
me.

If you find anymistakes, errors or inconsistencies in this book don’t hesitate to sendme an
email at feedback@donnywals.com. I’ve put a lot of care and attention into this book but
I’m only human and I need your feedback to make this book the best resource it can be. Make
sure you also reach out if you have any questions that aren’t answered by this book even
though you hoped it would so I can answer your questions directly, or possibly update the
book if needed.

Cheers,

Donny

Donny Wals 7

mailto:feedback@donnywals.com

Practical Core Data

Chapter Overview

Chapter 1 - Taking your first steps with
Core Data
In this chapter, you will take your first look at Core Data. You will learn what Core Data is, what
it can do, and how it can be used. You will be introduced to a simple project that uses Core
Data to create, update, and delete a very basic model. This chapter will introduce Core Data’s
model editor as well as the NSPersistentContainer class that encapsulates all of Core
Data’s essential building blocks. By the end of this chapter, you should have a rough idea of
what an application that uses Core Data looks like, what it’s capable of, and how you can add
Core Data to a project.

Chapter 2 - Understanding Core Data’s
building blocks
Before we get around to using Core Data in an application, it’s important to understand some
of Core Data’s essential building blocks. In this chapter, you will learn which components
are inside an NSPersistentContainer, and what the role of each component is. You
will learn about classes such as NSPersistentStoreCoordinator, NSManagedOb-
jectModel, and NSManagedObjectContext.

Chapter 3 - Defining entities using the
model editor
Core Data’s model editor is the starting point for adding Core Data to any project. It’s where
you define the entities that you want to store, their relationships, their properties, andmore.

Donny Wals 8

Practical Core Data

This chapter will provide an in-depth look at themodel editor. You will learn about entities,
relationships, fetch requests, transient properties, constraints, model versions, and much
more. By the end of this chapter, you will have a solid understanding of the model editor and
how you can use it to define your data models.

Chapter 4 - Fetching and displaying data
from a Core Data store
Once you have defined a data model for your application, you’ll want to use this model in
your application. In this chapter, you will learn how you can retrieve data from a Core Data
store using predicates to filter data. You will also learn how you can automatically respond to
changes in your Core Data store using anNSFetchedResultsController. In addition to
learning more about retrieving data, you will also learn about faults, batch delete and update
requests, merge policies, and query generations. By the end of this chapter, you should have
a pretty solid understanding of how you can manipulate the data that you have stored in your
Core Data store.

Chapter 5 - Using Core Data in a
multithreaded environment
In the first four chapters, you’ve used Core Data in a simple, single-threaded environment.
You’ve only interacted with the main managed object context through the persistent con-
tainer’s viewContext. In this chapter you will learn about Core Data’s strict multithreading
rules and background contexts. You will learn how you can safely transfer a managed object
from one context to the other, how you can solve save conflicts between contexts, and how
you can safely run your Core Data code in the correct managed object context. By the end of
this chapter youwill be able to optimize your Core Data code tomake optimal use of threading,
and to prevent blocking the main thread at all times.

Donny Wals 9

Practical Core Data

Chapter 6 - Sharing a Core Data store with
apps and extensions
Manyapplicationsmakeuseof iOS’ extension system tobuildwidgets, interactive notifications,
share functionality, iMessage apps andmore. If your app uses Core Data, it’s o�en desirable
that these extensions have access to your Core Data store and can make modifications if
needed. In this chapter, you will learn how you can do this. You will also learn how you can
use Core Data’s persistent history tracking features to automatically pull in any modifications
that were made to your Core Data store by one of your extensions.

Chapter 7 - Synchronizing your store with
a remote data source
A common use of Core Data is to locally persist data that also exists on a server that’s accessed
over the network. Doing this can dramatically increase your application’s speed and o�line
experience because you don’t need to rely on the network for every piece of data your views
require. In this chapter, I will demonstrate how you can build a synchronization strategy that
uses the Codable protocol and Core Data’s built-in merge policies. A�er showing you a basic
one-way synchronization strategy I will show you a more advanced two-way synchronization
strategy that allows users to make modifications to records while they are o�line. These
modifications are then pushed to a remote data source when the user is back online.

Chapter 8 - Synchronizing your store with
CloudKit
With iOS 13 Apple introduced a convenient way for developers to synchronize their local Core
Data stores with a remote CloudKit store with hardly any e�ort at all. This feature allows users
to synchronize data across their devices and Core Data does all the hard work on its own. In

Donny Wals 10

Practical Core Data

this chapter, you will learn how you can leverage this feature, and how you can write data to
CloudKit’s private and public storage.

Chapter 9 - Updating your datamodel and
performingmigrations
This chapter covers everything you need to know about updating your Core Data model. You
will learn about Core Data’s automatic migrations, model mapping, model versions, andmore.
A�er understanding the basics of automatic migrations you will take a look at how you can
write your ownmodel mappings. To top it o� you will learn how you can take full control of
Core Data’s migration process by writing your ownmigration logic from scratch.

Chapter 10 - Debugging and profiling your
Core Data implementation
Knowing how you can use and integrate Core Data in a project is extremely useful, but knowing
how to profile and debug it can be the key to taking your code from good to great. This chapter
introduces you to some launch arguments that you can use to gain insights into what Core
Data does under the hood, as well as profiling your code with instruments. You will learn
how to use the information gained from Core Data’s logging and Instruments to improve and
optimize your Core Data code and the user’s experience.

Chapter 11 - Using Core Data in your unit
tests
I firmly believe that every developer should write unit tests for their code whenever they
can. In this chapter I provide some guidance on how you can correctly set up and use a Core

Donny Wals 11

Practical Core Data

Data store in your unit tests. This will allow you to write your unit tests in isolation without
interfering with each other by setting up a separate, temporary, store for each unit test.

Chapter 12 - Where to go from here?
This book should set you up for a successful Core Data implementation in your applications.
You learned Core Data’s basics in the first couple of chapters andmoved on to more complex
use cases and concepts in later chapters. And while I’ve donemy best to cover a lot, there is
always more to learn. In this chapter, I will recommend articles, books, and videos that I think
are useful to look at if you want to learn more about Core Data when you’re done reading this
book.

Donny Wals 12

Practical Core Data

Chapter 1 - Taking your first steps with
Core Data
Chapter one, the start of something new. You’re going to start your Core Data adventure right
here, in this chapter. In this first chapter, I will show you lots of di�erent things. Some will
make sense right away, others will need some time to sink in.

My goal for this first chapter is to get you familiar with Core Data. I want you to see a lot of what
makes Core Data interesting, and how you can use it. You will gain more in-depth knowledge
in the chapters to come. For now, let’s get started with a birds-eye view of Core Data, and how
it can be used in an application.

In this chapter you will learn about the following topics:

• Creating a new project that uses Core Data
• Defining a simple Core Data entity
• Adding new records to a Core Data store
• Retrieving records from your store
• Modifying and deleting records

By the end of this chapter, you will have learned a lot of Core Data basics, and you will have a
solid foundation to build upon in the rest of this book.

Creating a project that uses Core Data
The easiest way to get started with Core Data is to have Xcode add Core Data to your project
from the get-go. And while there’s nothing inherently wrong with letting Xcode generate Core
Data code for you, I would like to walk you through adding Core Data to a new project yourself.
My reasoning for this is twofold:

1. It’s good to see that there’s no magic involved in adding Core Data to a project.
2. The di�erences between the generated code in Swi�UI and UIKit projects can be con-
fusing and would make it much harder for me to write this chapter.

Donny Wals 13

Practical Core Data

I’d like to expand onmy second point a little bit because I can already hear you think “Donny,
you’re supposed to explain the confusing parts. Not hide them.”

You’re right. I wrote this book to take away a lot of the confusion that surrounds Core Data.
Believe me when I say that adding Core Data to a project by hand is a great way to reduce
confusion. You will understand exactly what’s going on in the generated code for both Swi�UI
and UIKit since the code that Xcode generates for each is nothing more than a di�erent
implementation of the same principle. The approach that I’ll show you in this chapter is very
similar to the one that’s used in Xcode’s Swi�UI template and can be used in a UIKit project
without problems.

To follow along with this chapter, you can either create a new Xcode project yourself, or you
can take a look at the code in the Chapter 1 folder in the book’s code bundle. The code in the
bundle is the finished project so for typing along I would recommend creating a fresh Xcode
project from scratch.

Create a new project and make sure the use Core Data checkbox is unchecked. We’re not
going to add unit tests to this project so you can uncheck the unit testing checkbox aswell. For
your user interface, you can use either Swi�UI or a Storyboard, it doesn’t matter much since
I’ll go over both options in this chapter. I recommend that you use whichever UI framework
you’re comfortable with (or pick the one you want to learn more about).

Donny Wals 14

Practical Core Data

Figure 1: The create new project dialog

Note: Throughout this book, I assume that you have at least basic knowledge of Xcode,
Swi�, and iOS development, so I won’t explain everything every step of the way unless
it’s directly related to Core Data, or if I think the topic is obscure or advanced enough to
warrant some extra explanation.

To add Core Data to your newly created project, you need to create a new Core Data model
file. You can do this through the New Filemenu (File -> New -> File or cmd + N). Select the
Data Model file type from the list of files and click Create:

Donny Wals 15

Practical Core Data

Figure 2: New File dialog with the Core Data Model file selected

You can name your model definition file anything you want. I tend to name it a�er my project
since that’s the name that Xcode used to pick by default for a long time when you checked the
use Core Data checkbox during the creation of a project. Currently, Xcode uses Model as the
default Data Model name which is fine too. You can choose whichever name you prefer.

Whenyouopen thenewly created.xcdatamodel file in Xcode youare taken to theCoreData
model editor. This iswhere you’ll define your CoreData entities, their properties, relationships,
andmore.

Before I show you how you can add a new entity and use it in an app, I want to show you how
you can load and use the data model you just created in your app by creating an NSPersis-
tentContainer instance.

The NSPersistentContainer class is the starting point for any modern Core Data
stack.

Donny Wals 16

Practical Core Data

Creating an NSPersistentContainer and
loading your datamodel
To use any of the entities that are defined in a Core Data model file, you need to write a
little bit of code to set up the NSPersistentContainer. This code is used to load your
model definition, set up your database, andmore. InChapter 2 - Understanding Core Data’s
building blocks you will learn exactly what happens when you write your setup code.

For now, all you need to know is that NSPersistentContainer is the preferred way to
initialize your Core Data stack and load your Core Data model.

I like to wrap my persistent container in a simple wrapper object. Doing this makes your Core
Data stack more portable in my experience, and based on Apple’s new Swi�UI Core Data
template for Xcode 12 it seems that Apple prefers to take a similar approach.

By portability in this case I mean that it’s fairly trivial to move your Core Data stack to a
framework so you can use it in multiple apps.

All sample code for this book uses a Core Data stack that exists in a framework so I can easily
share my Core Data code between the Swi�UI and UIKit versions of the sample code.

Note: Any time you want to check out a sample project from this book, make sure to
open the .xcworkspace so you have access to the Swi�UI and UIKit projects, and
they can find the StorageProvider framework that provides the Core Data stack for
both applications. You can build both the UIKit and Swi�UI projects from the workspace
directly.

Addanew file to yourproject andname itStorageProvider.swi�. If youwant touse adi�erent
name that’s fine. You can also put this file in a folder if that helps you structure your project
better.

Add the following class definition to the newly created file:

import CoreData

class StorageProvider {

Donny Wals 17

Practical Core Data

let persistentContainer: NSPersistentContainer

init() {
persistentContainer = NSPersistentContainer(name:
"HelloCoreData")↪→

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

if let error = error {
fatalError("Core Data store failed to load with error:

\(error)")↪→

}
})

}
}

Notice how little code there’s required to load the model file and set up the Core Data store.

First, I create an instance of NSPersistentContainer. The persistent container’s initial-
izer takes the name of your model file as an argument. Make sure that the name you pass
matches your data model file’s name exactly. If there’s a mismatch between the name you
passed and the name of your model file your application will crash with a message that says
Failed to load model named YourModelName where YourModelName is replaced with
the string you passed as your model name. Note that the Swi� compiler won’t catch this
mistake. Your project will build and run just fine, but it’ll crash as soon as you attempt to
create an instance of your persistent container.

A�er creating an instance of the persistent container you must tell it to load its persistent
stores. You’ll learn more about persistent stores in Chapter 2 - Understanding Core Data’s
building blocks. For now, all you need to know is that a persistent store represents Core
Data’s underlying storage. It’s where your data is persisted.

Note that I am not handling any errors that might occur when loading my persistent store. At
this point in the book and in the context of this chapter, a failure to load the persistent store is
a programming error and not a recoverable situation. When your app is in production there
are various reasons for the persistent container to fail loading your persistent stores.

Donny Wals 18

Practical Core Data

It’s possible that Core Data couldn’t create the underlying storage for example. Whether you
consider this a recoverableerrorornot ismostlyup toyou. Youcan inspect theerrorproperty
and its error code to determine why your store couldn’t be loaded and then take appropriate
measures that are a good fit for your app. For example, your store might fail to load due to a
NSFileReadNoPermissionError or NSFileWriteNoPermissionError.

This o�en means that a device’s storage is still encrypted (since your app is supposed to
have permission to read/write files in its container). If this happens you could listen for the
.protectedDataDidBecomeAvailableNotification andmake a new attempt to
load the persistent store when this notification is fired.

Back to the task at hand. I’ve wrapped the persistent container in a class to encapsulate my
Core Data code neatly. This is not required, and you can easily build apps where you don’t do
this but as I mentioned earlier, I prefer this encapsulation.

Using the storage provider is fairly straightforward. Depending on your app, and the function-
ality that you introduce in your StorageProvider you might want to pass your Stor-
ageProvider around to views, viewmodels, coordinators, and other objects. I prefer to do
this through dependency injection. If you’re not sure what dependency injection is, here’s an
example:

struct ContentView: View {
let storageProvider: StorageProvider

var body: some View {
Text("Hello, world!")

.padding()
}

}

This view depends on a StorageProvider instance that’s passed to it by its creator. In an
iOS 14 application that uses the Swi�UI lifecycle this can be done as follows:

@main
struct HelloCoreDataApp: App {

Donny Wals 19

Practical Core Data

var body: some Scene {
WindowGroup {

ContentView(storageProvider: StorageProvider())
}

}
}

If you’re not using the new iOS 14 application lifecycle you would pass an instance of Stor-
ageProvider to the ContentView initializer that’s called fromwithin the SceneDele-
gate using a similar technique.

When you’re using a UIKit project that doesn’t use storyboards you can pass your Storage-
Provider instance to your view controller’s initializer. Imagine that you have the following
ViewController class:

class ViewController: UIViewController {
let storageProvider: StorageProvider

init(storageProvider: StorageProvider) {
self.storageProvider = storageProvider

super.init(nibName: nil, bundle: nil)
}

required init?(coder: NSCoder) {
fatalError("Not implemented")

}
}

This ViewController defines an initializer that accepts the StorageProvider. Typi-
cally you would pass this object from within your AppDelegate or SceneDelegate at
the time of creating your ViewController instance:

Donny Wals 20

Practical Core Data

let viewController = ViewController(storageProvider:
StorageProvider())↪→

If you’re using storyboards in your application, the dependency injection approach becomes
far more complex. The simplest solution I have found for this is to get rid of dependency
injection and use a shared instance of your StorageProvider by adding the following line
to the StorageProvider class:

static var shared = StorageProvider()

I typicallywouldn’t recommend this approachbut it’s by far themost straightforwardapproach
that’s compatible with storyboards that doesn’t involve implicitly unwrapped optionals.

One important thing you should keep in mind is that you’ll want to create and use a single
instance of your StorageProvider class. Thismeans that you should create an instance of
your StorageProvider in one place, and pass that instance around rather than creating
new instances all over the place. The most obvious symptom of this is the following warning
in Xcode’s console when you run your app:

Multiple NSEntityDescriptions Claim NSManagedObject Subclass ...

When you see this warning, you shouldmake sure that you’re not creating a second instance of
StorageProvider by accident. You’ll learn more about this warning in Chapter 11 - Using
Core Data in your unit tests.

Now that you’ve seen several ways in which you can start using your StorageProvider in
an app, let’s go back to Core Data’s model editor and define your first Core Data entity.

Defining a simple Core Data entity
When you click your .xcdatamodel file and open the Core Data model editor you’ll see the
following screen:

Donny Wals 21

Practical Core Data

Figure 3: The Core Data model editor

This is where you define all of the entities (or models) that you want to store in Core Data. You
alsodefine any relationships thatmight exist between thesemodels, you configure constraints,
add properties, specify which properties are optional, and which properties are required. This
information is then used by your persistent container to create and communicate with Core
Data’s underlying storage mechanisms that persist data to disk. You will take an in-depth look
at the model editor in Chapter 3 - Defining entities using the model editor where you’ll
learn how to define relationships, fetch requests, constraints, and more through the editor.

For now, you’ll add a plain and simple Core Data entity that represents a movie.

You can add new entities using the Add Entity button in the bottom le� area of the model
editor. When you click this button, Xcode adds a new entity called Entity under the Entities
section in the le� area of the editor. Double click on the entity name to change it. The name
you choose here is also the name that you’ll use to create instances of your model in code. It’s
common for folks who are familiar with databases to name their entities using plural notation.
For exampleMovies, or if you’re familiar with ORMs youmight be tempted to su�ix your entity

Donny Wals 22

Practical Core Data

with Entity. For example MovieEntity. Typically I prefer to name my entities like I would
namemymodels. In this case, I would namemy entityMovie.

A�er defining an entity it’s time to add some attributes (properties) to the entity.

Since I want to keep this entity simple, I will add a single property to mymovie; name.

To add an attribute, select your entity and click on the + icon in the Attributes section in the
middle of the editor. Type your attribute name and give it a type. In this case I’ve namedmy
attribute name and it’s a String.

Figure 4: Screenshot of my name attribute

When you select your attribute (don’t double click it) you can configure the attributes proper-
ties in the Data Model Inspector in Xcode’s sidebar on the right side.

Figure 5: Screenshot of the Data Model Inspector

Core Data properties are optional by default. However, the name attribute I just added to

Donny Wals 23

Practical Core Data

my movie needs to be non-optional. A movie without a name doesn’t make a lot of sense.
Uncheck theOptional checkbox and leave everything else as is.

This is all you need to do in themodel editor for now. You’ll take a closer look at themodel
editor inChapter 3 - Defining entities using themodel editorwhere I’ll show you a lotmore
model editor features and options. The goal in this chapter is to show you a little bit of several
things and expand on them in later chapters.

Adding new records to a Core Data store
Since there are many ways to design, build, and structure your user interface I won’t be telling
you how to build your UI. The sample projects for this book are all complete and working, so
you can take a look at what I did to set upmy views but your approach could be completely
di�erent.

For this reason, I will addmost ofmy Core Data related code to theStorageProvider class
that you created in the previous section. By doing this, I’m leaving the UI implementation en-
tirely up to you. This means that you’ll be able to use the UI framework and layout techniques
of your choosing while I try and stay out of your way.

In the previous section, you added aMovie entity using the model editor. If you build your
project now, Xcode will automatically generate a Swi� class definition for your entity that
matches the name you gave it. This definition is generated in your project’s Derived Data
folder and should not be changed by you. In Chapter 3 - Defining entities using themodel
editor you will learn more about how Xcode generates these class definitions and what other
options you have.

When youwant to create a new instance of an entity, you initialize the class that corresponds to
the entity. All entity classes inherit from NSManagedObject and they are calledmanaged
objects.

Every managed object is connected to a managed object context.

A managed object context is a layer, or view, on top of one or more persistent stores. You
can think of such a view as a sort of snapshot. A managed object context can fetch data from
a persistent store, hold on to this data, manipulate it, insert new objects and more. These
changes exist onlywithin themanagedobject context until the context is savedandall changes

Donny Wals 24

Practical Core Data

are written to the persistent store. A managed object instance is always connected to a single
managed object context. However, di�erent instances of the same object can exist in di�erent
contexts.

We’re not going to concern ourselveswith usingmultiplemanaged object contexts untilChap-
ter 5 - Using Core Data in a multithreaded environment but it’s good to understand the
relationship between amanaged object and itsmanaged object context even in an application
that uses a single managed object context.

Let’s add some objects to the Core Data store we’ve created.

Create a UI that has a single text input and a button. You’ll type amovie name in the text input,
hit the button and then amovie should be written to Core Data with the name you typed in
the text field. I won’t show you how to build this UI, I’m sure you can do it yourself. Instead, I’ll
show you the function that your button should call when it’s tapped to create and save a new
movie.

The code to insert a movie into a managed object context and save it looks like this:

extension StorageProvider {
func saveMovie(named name: String) {

let movie = Movie(context: persistentContainer.viewContext)
movie.name = name

do {
try persistentContainer.viewContext.save()
print("Movie saved succesfully")

} catch {
print("Failed to save movie: \(error)")

}
}

}

While the code in the snippet above is short, there is a lot to unpack.

The function saveMovie(named:) is defined on StorageProvider. This means that
you can create anewmovie by callingstorageProvider.saveMovie(named: "Best

Donny Wals 25

Practical Core Data

Movie Ever") from within your view controller or Swi�UI view. Call this function from
within your button’s tap handler and pass it the text that you typed in your text input.

The first thing that happens in saveMovie(named:) is that I create an instance of Movie.
Note that I don’t pass themovie name to theMovie’s initializer. Instead, I initialize theMovie
with a managed object context. The instance of Movie I created is tied to a managed object
context immediately since every managed object should belong to exactly one managed
object context.

I have access to a managed object context through the persistent container’s viewContext
property. This viewContext is a managed object context that is associated with the main
thread. Without going into too much detail, it’s essential in Core Data that you use a man-
aged object context and access its objects from the thread that they were created on. The
viewContext is created on the main thread, and all managed objects that belong to the
viewContext can be accessed from themain thread safely.

For the time being, all code you’ll write runs on the main thread so there’s no need to worry
about running your code on the appropriate thread just yet. You will learn more about this in
Chapter 5 - Using Core Data in amultithreaded environment. For now, just remember that
the viewContext belongs to the main thread, and that shouldn’t access managed objects
from a di�erent thread than the context they belong to. Following this rule in all cases can
save you a lot of headaches down the line.

Since saveMovie(named:) is called from the main thread, we can safely create a Movie
that’s associated with the persistent container’s viewContext.

A�er creating the managed object, we can assign values to its properties. So in this case, you
can set the movie’s name property to the name that was passed.

You might recall that in the previous section we marked name as non-optional. Yet when
you inspect the name property on Movie, you’ll find that it’s String?. In other words, an
optional string.

Well that’s awkward, isn’t it?

You didn’t make amistake.

The property is non-optional for Core Data. For Swi�, the property is optional. You can define
managed object subclasses by hand, and if you choose to do this, you’re free to define name
asString. Since Core Data is built onObjective-C, you can useString instead of String?

Donny Wals 26

Practical Core Data

and you wouldn’t run into problems when accessing namewithout setting it first. You would
simply receive an empty string instead of nil. This di�erence and how this all works can
be quite confusing due to the several layers that are involved here. Objective-C and the
@NSManaged annotation that’s added to properties of a managed object subclass enable
certain functionality that doesn’t normally exist in Swi�.

My main advice here is to not worry too much about the di�erences between an entity’s
definition in themodel editor compared to its definition as an NSManagedObject subclass.
Core Data’s validation is always based on how you defined your model in themodel editor.
So while Movie.name is a String? trying to save your Moviewithout setting the name
won’t work because Core Data knows that name is a required property.

That brings me to the last step in saveMovie(named:); the do { ... } catch {
... } block.

Since saving a managed object context can fail, you must prefix calls to save() with the
try keyword. Since a managed object context holds on to all of its modifications in memory
until it is told to save these changes to the persistent store, you call save() on the managed
object context that should save its changes when it’s time to persist your data. If you’d have
multiple managed contexts, calling save on one context will not save the others.

Since the Movie is added to the viewContext, I call save() on that context. If no errors
occur, the managed object context is persisted successfully and my movie was saved. If
something goes wrong I print an error.

Note that this doesn’t undo any of the existing changes in the managed object context. If
you’d try to save amovie with a nil name first and then try to save a secondmovie with a
valid name, calling save()would still fail because the movie with a nil name still exists in
the managed object context.

Depending on why your save failed you might want to discard all changes that were made
to the managed object context immediately. In the example of attempting to insert a new
movie with a name that is set to nil, discarding changes makes a lot of sense because we
don’t want to keep that invalid movie around.

To roll back your changes in case of an error, you can call rollback() on amanaged object
context to discard all of its not-yet persisted changes. Note that this doesn’t just discard invalid
managed objects. It discards all changes that have not yet been persisted to the persistent
store:

Donny Wals 27

Practical Core Data

do {
try persistentContainer.viewContext.save()
print("Movie saved succesfully")

} catch {
persistentContainer.viewContext.rollback()
print("Failed to save movie: \(error)")

}

Being able to persist data is neat, but at this point you have nomeans of checking whether
your save was successful other than trusting your print statement. Let’s expand this example
a little bit by adding the ability to retrieve all savedmovies from Core Data so you can show
them in your app’s UI.

Retrieving records from your store
No app that uses Core Data is complete without the ability to fetch data from the store and
showing it to your users. The bread and butter of fetching data in Core Data is the NS-
FetchRequest class. A fetch request contains all the information that Core Data needs to
fetch the exact data you require. Sometimes you’ll want to retrieve all records of a specific
type, and other times you’ll want to limit your fetch request to a very specific set of results
based on specific criteria. In this section, I will show you a very basic fetch request that fetches
allMovie records. In Chapter 4 - Fetching and displaying data froma Core Data store you
will learn about filtering results with predicates andmuchmore.

In this section, I will assume that you are somewhat experienced with building list layouts
in your apps. It doesn’t matter whether you want to present results in a table view if you’re
working with UIKit (or AppKit) or you prefer Swi�UI’s list component, I will show you how you
can fetchmovies from Core Data as an array that can be used as a data source for either UI
framework. If you’re not entirely sure how you would use the code in this section for a list or
table view, don’t hesitate to take a look at the book’s code bundle. I’ve included a Swi�UI
example as well as a UIKit example that should get you going.

Like I mentioned earlier, Core Data uses instances of the NSFetchRequest class to fetch
data. A fetch request is always executed by amanaged object context (we’ll use the view-

Donny Wals 28

Practical Core Data

Context again in this section) and it contains all information needed to retrieve the data
you need.

A fetch request contains information about the entity that you’re looking for, any filtering
predicates, sorting rules andmore. We’re not going to provide any predicates or sort descrip-
tors for now. We’ll simply create and execute a fetch request that fetches all Movie instances
that are stored in the Core Data store.

Let’s take a look at what the code to fetch all movies looks like:

extension StorageProvider {
func getAllMovies() -> [Movie] {

let fetchRequest: NSFetchRequest<Movie> = Movie.fetchRequest()

do {
return try persistentContainer.viewContext.fetch(fetchRequest)

} catch {
print("Failed to fetch movies: \(error)")
return []

}
}

}

This code implements a new extension on StorageProvider with a method to fetch
movies. Themain reason I added this functionality in an extension is so that you can easily
use this code in an application regardless of the UI framework you use. It’s perfectly okay to
create and execute your fetch request elsewhere if that fits your application’s architecture
better.

In the getAllMoviesmethod I create a fetch request using Movie.fetchRequest().
Every managed object subclass comes with a static fetchRequest() method as long
as Xcode generated the NSManagedObject subclass on your behalf. Note that I had to
explicitly add a type tomy fetchRequest constant. If you omit the type Xcode will fail to
compile your project because it’s not sure which overload of fetchRequest() you want to
use. One overload returns NSFetchRequest<NSFetchRequestResult> and the other
returns an NSFetchRequest that’s generic over your managed object. In this case that
would be Movie.

Donny Wals 29

Practical Core Data

The generic argument for anNSFetchRequest allows Swi� to knowwhich kind ofmanaged
object a fetch request returns which in turn allows you to easily return a list of movies.

A�er creating the fetch request, it canbeexecutedbypassing it to themanagedobject context’s
fetch(_:)method. This method can throw errors so youmust call it from within a do {}
catch {} construction.

All in all the code to retrieve all movies is fairly straightforward, and since we’re returning an
array of movies from getAllMovies it should be fairly straightforward to use this function
to retrieve data and show it in a list (or table) view.

Note that your UI does not automatically update when you add a newmovie. The reason for
this is that a fetch request runs once. Thismeans that your fetched results do not automatically
update. In Chapter 4 - Fetching and displaying data from a Core Data store you will learn
more about building UIs that update whenever your Core Data store updates. Until then,
make sure to implement a button that you can tap to re-execute your fetch request by calling
getAllMovieswhenever you want to update your list of movies.

For now, you’ve seen everything I wanted to show you with regard to retrieving data. You’ll
learn more sophisticated andmore useful methods of fetching data soon.

Modifying and deleting records
In addition to retrieving data, modifying and deleting records are common operations that
you’ll want to perform on data that you’ve stored in your Core Data store.

Just like in the previous section, I will introduce you to the basic concepts of delete and update
operations. You will learn more advanced ways to manipulate records in your Core Data store
in Chapter 4 - Fetching and displaying data from a Core Data store.

Once again, I will not show you how to build your UI. I trust that you know how to implement
the following:

• Deleting items from a list like Swi�UI’s List or UIKit’s table view
• A way to select andmodify an item in a list

If you’re not sure how you can implement either of these interactions feel free to take a look
at this book’s code bundle. I’ve implemented a Swi�UI solution and a UIKit solution that both

Donny Wals 30

Practical Core Data

support swipe to delete and use a modal sheet to allow a user to change amovie’s name.

Let’s look at code to delete a Core Data record first:

extension StorageProvider {
func deleteMovie(_ movie: Movie) {

persistentContainer.viewContext.delete(movie)

do {
try persistentContainer.viewContext.save()

} catch {
persistentContainer.viewContext.rollback()
print("Failed to save context: \(error)")

}
}

}

I have once again added an extension to StorageProvider in order to nicely decouple all
Core Data code from the UI. This should make it easier for you to integrate this code in your
project.

The deleteMovie(_:) method takes a movie that you want to delete from Core Data.
Since Core Data keeps track of all managed objects through a unique objectID that you
cannot modify yourself, you can simply tell your managed object context to delete a specific
instance of a managed object. Remember that a managed object is always bound to a single
managed object context? Every managed object is unique within its context. This means that
when we pass a movie instance to the context’s delete it will knowwithout a shadow of a
doubt which movie you want to delete.

A�er telling the managed object context to delete a managed object, you only need to save
the context so it can persist all of its changes (in this case the deletion of a movie) to the
underlying persistent storage.

Just like before, this call to save() can fail, and if it does we’ll reset the managed object
context by discarding any unsaved changes.

The code to update amovie is rather short, and given what you already know about Core Data,
youmight have an idea why that is:

Donny Wals 31

Practical Core Data

extension StorageProvider {
func updateMovies() {

do {
try persistentContainer.viewContext.save()

} catch {
persistentContainer.viewContext.rollback()
print("Failed to save context: \(error)")

}
}

}

Because amanaged object is always connected to amanaged object context, any changes
youmake to amanaged object are registered within themanaged object context. So when
you change a Movie instance’s name property, this change is immediately registered in the
managed object context.

I didn’t change any movie’s name in the snippet above. You’ll usually set a managed object’s
properties in your view, for example whenever your user types in a text field. Once the user
chooses to persist their changes, all you need to do is save your managed object context.

To persist the updated name to the persistent storage you just need to save the managed
object context and it will automatically persist the updated Movie.

Note that if you have implemented editing functionality through a popup in your app, and
the user changes a managed object’s data and then cancels their edit action you will need to
reset the object that the user was editing. One way to do this is to call rollback() on the
managed object context that the object belongs to.

A managed object always knows which context it belongs to (if any), so a convenient way to
roll back any changes in a managed object’s context would be to use the following code:

movie.managedObjectContext?.rollback()

Note that this will roll back all unsaved changes within the managed object context. This
might not be desirable in your use-case.

Donny Wals 32

Practical Core Data

It’s possible to isolate modifications to a managed object by using multiple managed object
contexts, and dedicating a specific context tomakingmodifications. Youwill learnmore about
this in Chapter 5 - Using Core Data in amultithreaded environment.

For now, you’ve seen everything I wanted to show in regard to modifying and deleting data in
Core Data. While the code I’ve shown you in this section is rather simple, it should give you a
good initial idea of how Core Data works, and in the next chapters you will dive much deeper
into Core Data and you will learn muchmore about everything I’ve shown you here.

In Summary
In this chapter, I have shown you the very basics of Core Data. While it might not seem like
you’ve done a lot just yet, you have already learned a ton. You learned how you can add a Core
Data model definition to a project in Xcode. You saw how you can add entities to your model
definition using Core Data’s model editor. You also saw how you can set up your Core Data
stack using a persistent container, and how you can use it to load your model definition.

Next, you learned how you can store data in your Core Data store, how you can fetch data,
how tomodify and delete records. While I explained each of these operations, you learned
that Core Data uses managed object contexts. You learned that records in a Core Data store
are called managed objects and that each managed object belongs to a managed object
context. You also learned that it’s possible to havemultiple managed object contexts in an
application.

For each of the topics in this chapter, you learned about the very basics, and there is much
more to learn in the next chapters. However, by showing you all of these small pieces you
should now have a solid foundation to build upon. The first topic to tackle is the Core Data
stack. What’s in it? And how does it all work? You’ll find the answers to these questions in the
next chapter.

Donny Wals 33

Practical Core Data

Chapter 2 - Understanding Core Data’s
building blocks
To properly use Core Data, it’s essential to at least understand some of its inner workings.
Core Data is a complex persistence framework that does its best to ensure that the data you
want to persist is stored safely, meaning that it’s as free from corruption as possible, and that
you can focus on building your app without worrying toomuch about concurrent read and
write operations that modify your database.

Over the past few years, Apple has done a tremendous amount of work to make sure that
developers need to know less and less about Core Data’s internals. This is a fantastic e�ort,
but understanding Core Data’s internals will help you understand your code much better,
especially when your application becomes more complex and you start dealing with multiple
managed object contexts.

For now, you don’t need to worry aboutmultiple managed object contexts in your application.
That’s a subject for Chapter 5 - Using Core Data in amultithreaded environment.

While multiple managed object contexts are still a couple of chapters away, this is the perfect
time for you to learn about the set of components that make up a persistent container. These
components are also known as the Core Data stack.

In this chapter, we will break down Core Data’s persistent container, explore its components,
and analyze what each component does exactly. You will learn how Core Data persists your
data to disk, and what options you have to change Core Data’s underlying storage mecha-
nism.

Breaking down the persistent container
From iOS 10 onwards, developers interact with Core Data through the NSPersistentCon-
tainer class. This class provides a convenient and easy to use interface for Core Data and
makes configuring, managing, and using Core Data much easier than it was before iOS 10
existed.

Donny Wals 34

Practical Core Data

While NSPersistentContainer provides a convenient interface from iOS 10 onward, the
underlying building blocks haven’t changed compared to the old way of using Core Data. A
persistent container creates and configures a handful of objects that make up the Core Data
stack.

The following image is a schematic depiction of the components that are involved in the Core
Data stack, and how these objects relate to each other:

Figure 6: A schematic overview of the persistent container

As you can see, a persistent container holds a handful of objects that exist alongside each
other, and together they make up the Core Data stack. You already know that the easiest
way to create an instance of a persistent container is to initialize it with the name of your
.xcdatamodel file and calling the container’s loadPersistentStores function.

Setting up a Core Data stack through NSPersistentContainer is the simplest approach
by far, and I would almost always recommend that you go with this option when you add Core
Data to your app. However, as an exercise to understand Core Data better, let’s see how you
can initialize and set up a Core Data stack without using a persistent container.

This is how developers used to set up their Core Data stack before iOS 10:

Donny Wals 35

Practical Core Data

class CoreDataStack {
lazy var managedObjectModel: NSManagedObjectModel = {

guard let url = Bundle.main.url(forResource: "MyModel",
withExtension: "momd") else {↪→

fatalError("Failed to locate momd file for MyModel")
}

guard let model = NSManagedObjectModel(contentsOf: url) else {
fatalError("Failed to load momd file for MyModel")

}

return model
}()

lazy var coordinator: NSPersistentStoreCoordinator = {
let coordinator =

NSPersistentStoreCoordinator(managedObjectModel:
managedObjectModel)

↪→

↪→

let documentsDirectory = FileManager.default.urls(for:
.documentDirectory,↪→

in: .userDo-
main-
Mask).first!

↪→

↪→

let sqlitePath =
documentsDirectory.appendingPathComponent("MyModel.sqlite")↪→

do {
try coordinator.addPersistentStore(ofType: NSSQLiteStoreType,

configurationName: nil,
at: sqlitePath,
options: nil)

} catch {
fatalError("Something went wrong while setting up the

coordinator \(error)")↪→

}

Donny Wals 36

Practical Core Data

return coordinator
}()

lazy var viewContext: NSManagedObjectContext = {
let context = NSManagedObjectContext(concurrencyType:

.mainQueueConcurrencyType)↪→

context.persistentStoreCoordinator = coordinator
return context

}()
}

There’s a lot of code here, so based on the code alone it’s safe to say that NSPersistent-
Container is a huge improvement. However, to understand Core Data better I want to cover
each object in thisCoreDataStack class individually to explain what each object does, and
what its purpose in the Core Data stack is exactly. Let’s start withNSManagedObjectModel
and work our way down from there.

Understanding themanaged object model

Themanaged objectmodel is the heart and soul of your Core Data store. It’s where your object
graph is defined, where your fetch request templates are stored, andwhere your entities, their
relationships, and properties are defined. In the example code that I showed you earlier the
managed object model is set up as follows:

lazy var managedObjectModel: NSManagedObjectModel = {
guard let url = Bundle.main.url(forResource: "MyModel",

withExtension: "momd") else {↪→

fatalError("Failed to locate momd file for MyModel")
}

guard let model = NSManagedObjectModel(contentsOf: url) else {
fatalError("Failed to load momd file for MyModel")

}

Donny Wals 37

Practical Core Data

return model
}()

Note that this code doesn’t domuch. It looks for a MyModel.momd file in the main bundle
and uses this file to create an instance of NSManagedObjectModel. When you work on
your Core Data model using the model editor you are working on a visual representation of
the managed object model. This visual representation is automatically converted to a momd
file that describes your object graph in away that’s usable by Core Data. This file is then stored
in your bundle so it can be loaded at runtime.

When the momd file is missing or can’t be loaded, your Core Data stack can’t be initialized. A
missing momd file is not an error that you can recover from, it means that something went
wrong while compiling your app so it makes sense to fail with a fatalError so you can
figure out what might be wrong with your project. From personal experience, I have only ever
seen my app crash like this when I had renamedmy xcdatamodel but forgot to update the
model name in my code or vice versa.

It’s possible to build your entire managed object model in code without using Core Data’s
model editor by defining and configuring your entities, their properties, relationships, and
more in a custom NSManagedObjectModel subclass. This is a tedious process and I
wouldn’t recommend that you do this. The managed object model that Xcode generates
for you based on the model that you build in the model editor is perfectly fine, so there’s no
need to construct a model in code.

Since you’ll be using theNSPersistentContainer throughout this bookwe’ll leave load-
ing the momd file and initializing the NSManagedObjectModel to the persistent container
whenever possible. In Chapter 11 - Using Core Data in your unit tests you’ll learn how and
when itmakes sense to load yourmanagedobjectmodel by hand even if youuse the persistent
container.

Let’s move on and take a closer look at the NSPersistentStoreCoordinator next.

Donny Wals 38

Practical Core Data

Understanding the persistent store coordinator

Before I explain the persistent store coordinator and its purpose, let’s take a look at the code
that I showed you earlier to see how a persistent store coordinator is initialized.

lazy var coordinator: NSPersistentStoreCoordinator = {
let coordinator = NSPersistentStoreCoordinator(managedObjectModel:

managedObjectModel)↪→

let documentsDirectory = FileManager.default.urls(for:
.documentDirectory,↪→

in: .userDomain-
Mask).first!↪→

let sqlitePath =
documentsDirectory.appendingPathComponent("MyModel.sqlite")↪→

do {
try coordinator.addPersistentStore(ofType: NSSQLiteStoreType,

configurationName: nil,
at: sqlitePath,
options: nil)

} catch {
fatalError("Something went wrong while setting up the coordinator

\(error)")↪→

}

return coordinator
}()

There are two important things to note in the code above.

First, the persistent store coordinator takes a managed object model as an argument for its
initializer. In the code above I also obtain a path to an SQLite file that’s located in the docu-
ments directory. This path is used to add a persistent store to the persistent store coordinator
so it knows which underlying storage it should connect to, and what kind of store that is. In
the code above that’s an SQLite store that’s located in the documents directory. When you’re
using a persistent container, the default location for the underlying SQLite file will be in your

Donny Wals 39

Practical Core Data

app’s Application Support directory.

It’s possible to store your data in something other than an SQLite store. We’ll explore Core
Data’s di�erent underlying storage options in the next section.

The purpose of Core Data’s persistent store coordinator is to provide an interface on top of
a persistent store. In this case, the persistent store uses an SQLite store as its underlying
store. What’s neat about NSPersistentStoreCoordinator is that its interface can
wrap di�erent kinds of persistent stores that use di�erent underlying stores.

Thepersistent store coordinator connects toapersistent storeand is responsible for interacting
with the store. It’s responsibilities include executing queries on its store, performing data
validation, andmore. To do this, the persistent store coordinator uses themanaged object
model that it received in its initializer. Themanaged object model contains all information
that’s needed by the persistent store coordinator to perform its job.

As a user of Core Data you hardly ever interact with a persistent store coordinator directly.
Instead, you interact with Core Data through one or more managed object contexts.

Diving deeper intomanaged object contexts

You already know thatmanaged object instances in your app are associatedwith a singleman-
aged object context. The managed object context is where you create, load, andmanipulate
your managed objects. It’s possible to have more than onemanaged object context in your
app. Eachmanaged object context holds references to itsmanaged objects. Amanaged object
context also has a reference to the persistent store coordinator that it’s associated with.

In the code I’ve shown you earlier in this chapter, I created a managed object context as
follows:

lazy var viewContext: NSManagedObjectContext = {
let context = NSManagedObjectContext(concurrencyType:

.mainQueueConcurrencyType)↪→

context.persistentStoreCoordinator = coordinator
return context

}()

Donny Wals 40

Practical Core Data

As you can see in the code above, a managed object context is associated with a persistent
store coordinator. Whenever you ask a managed object context to fetch objects, or if you call
save() on your managed object context, the managed object context will forward this call
to its persistent store coordinator, and the persistent store coordinator will, in turn, forward
the request to the persistent store to interact with your data.

Note that the initializer for NSManagedObjectContext takes a concurrencyType as
its argument. This concurrency type di�erentiates a persistent container’s viewContext
(which is associated with the main queue) from other managed object contexts that run with
the privateQueueConcurrencyType.

Managed objects should only be used on the same thread as their context. For that reason, a
managed object context that runs on themain queue can safely be used to retrieve objects
that are used to display data in your app’s UI. This is also why in a persistent container the
main queue is called viewContext. It’s the context that you’ll use in your views.

I’ve alreadymentioned this beforebut you can connectmore thanonemanagedobject context
to a persistent store coordinator. For example, you can use your viewContext to fetch data
from your Core Data store and show it to the user. You can create a background managed
object context alongside the viewContext. This background context can be used to import
new data from a network call, or to perform costly tasks that might block your UI. It’s also
possible to create a managed object context that’s a child of another managed object context.
When you save a child context, its changes are not persisted to the persistent store. Instead, a
child context saves its changes to its parent context. Child contexts are useful as a temporary
context, allowing you tomake isolated changes tomanaged objects and either discard or save
them as needed.

Youwill learnmore about havingmore than onemanaged object context in Chapter 5 - Using
CoreData in amultithreadedenvironment. Until then you’ll learn the fundamentals of Core
Data using a single context (the viewContext).

Before wemove on to exploring Core Data’s underlying storage options, let’s summarize the
Core Data stack. You’ve learned that a Core Data stack in applications from iOS 10 onward
will typically use a persistent container to create and configure a Core Data stack. You’ve also
learned that a persistent container is responsible for creating three objects:

• A persistent store coordinator
• The NSManagedObjectModel

Donny Wals 41

Practical Core Data

• At least one managed object context (the viewContext)

You learned that a persistent store coordinator is responsible for saving and retrieving data.
The coordinator can translate fetch requests to, for example, an SQLite query if it uses SQLite
as its underlying store.

You also learned that a managed object model defines your Core Data entities and helps the
persistent coordinator set up and communicate with the persistent store.

Lastly, you learned about the managed object context. This is your entry point for using Core
Data, and the object that you’ll interact with most. The managed object context forwards
fetch and save requests to the persistent store coordinator which will then, in turn, go to the
persistent store if needed. Most of the time you’ll be blissfully unaware of how this works and
you’ll interact only with the managed object context.

Exploring Core Data’s underlying storage
Throughout this chapter, I have mentioned that a persistent store coordinator uses some kind
of underlying storage. I’ve also used SQLite in my examples, and while SQLite is the most
common storage option by far, it’s not the only option available.

Di�erent storage needs might justify using a specific storagemechanism. The options that
Core Data provides out of the box are the following:

• XML (not available on iOS)
• Binary
• SQLite
• In-Memory

All stores except for SQLite are loaded intomemory all at once. Thismeans that these solutions
are not ideal for larger data sets or performance-critical applications. The way that Core Data
evaluates predicates and executes fetch requests is also di�erent between SQLite and the
other three options.

Since the XML, Binary, and in-memory stores are entirely loaded intomemory, they are queried
fromwithinObjective-Cwhichmeans thatNSPredicate features that rely onCocoa features

Donny Wals 42

Practical Core Data

will work fine. This is not the case for the SQLite store since all queries are translated to
SQLite.

If the four storage options provided by Core Data out of the box are not to your satisfaction it
is possible to build a custom store by subclassing NSAtomicStore or NSIncremental-
Store. Doing this is far beyond the scope of this book and while it may be a fun exercise, it’s
unnecessary to do this in virtually any application unless you have highly specific needs.

Throughout this book, I will focus on using the SQLite storage option since that’s the storage
option that you’ll end up using for pretty much everything you’ll want to do with Core Data.

An important side note that I want you to imprint in your mind is that while Core Data can use
SQLite as its underlying storage, it’s not an SQLite wrapper.

You should never query or modify the underlying SQLite store directly for example. In Chap-
ter 10 - Debugging and profiling your Core Data implementation, I will show you some
techniques for profiling and optimizing your Core Data store by inspecting the SQLite state-
ments that Core Data executes, but that’s the only time we’ll explicitly rely on Core Data using
SQLite.

You will have the best experiences with Core Data if you accept that Core Data is not an SQLite
wrapper, nor a database in itself. Core Data is a framework that manages an object graph. This
doesn’t mean that it must use rows, tables, or even store files on disk. This point is reinforced
by the fact that Core Data can use an XML file to store its data, or even an in-memory store.

Furthermore, Core Data does muchmore for you than a typical database does. It manages
and validates bidirectional relationships, generates a database schema for you, generates and
performs migrations on your behalf, and more. These are features that your typical database
normally won’t give you, which means that Core Data provides you with muchmore than a
plain persistence layer could.

So while Core Data uses an underlying storagemechanism, and this storage is typically SQLite
you shouldmake sure toworkwith Core Data as if you have no ideawhat its underlying storage
mechanism is most of the time. Usually the only time you’ll care about SQLite is when you’re
analyzing and tweaking your application’s performance by inspecting the queries that Core
Data sends to its SQLite store.

Donny Wals 43

Practical Core Data

In Summary
You didn’t write any code in this chapter. Instead, you learned which objects are used to build
a Core Data stack, and what each object’s role in the stack is. While youmight not be able to
apply this knowledge immediately, it is fundamental knowledge that will help you understand
every chapter in the book much better because you’ll know which part of the Core Data stack
you’re dealing with, and what that part does.

First, I showed you the oldway of setting up a Core Data stack. This showed you that Core Data
uses amanaged objectmodel, a persistent store coordinator, and at least onemanaged object
context. You learned that the managed object context is the main entry point for interacting
with Core Data. All managed objects in your application are connected to a managed object
context, the managed object context is responsible for retrieving data, and for saving changes
in the context to the persistent store.

You also learned that the managed object context does its job by forwarding requests to the
persistent store coordinator which in turn will load data from its underlying storage if needed.
In the second section of this chapter you learned that Core Data has four di�erent storage
mechanisms out of the box, and that SQLite is by far the most common. The most important
lesson from that sectionwas that Core Data is not awrapper for SQLite, and that you shouldn’t
treat it as one.

In the next chapter, you will learn everything you need to know about defining entities in the
Core Data model editor andmore.

Donny Wals 44

Practical Core Data

Chapter 3 - Defining entities using the
model editor
When you’re working with Core Data you’ll normally use a .xcdatamodel file to create and
configure your Core Data entities but you don’t have to. You’re free to define your entiremodel
in code on your own, but defining your model in the editor is far easier, more common, and
more reliable. For that reason, I will only focus on showing you the Core Data model editor.
You will not learn how to define a model purely in code.

In this chapter we’ll go over the following topics:

• Defining entities and their properties in the model editor
• Writing and generating NSManagedObject subclasses
• Managing relationships
• Using fetched properties
• Understanding abstract entities

While this chapter will focus mostly on the model editor, you will also learn a ton about
defining NSManagedObject subclasses, and how they relate to the model editor. You will
learn about di�erent ways to have Xcode generate your subclasses, and you will learn how
you can write them yourself.

By the end of this chapter, you will have a solid understanding of modeling your data using
the model editor.

Note: The sample project for this chapter does not include a companion app. It’s a frame-
work called Chapter3 that contains the data model that we’ll create in this chapter.

Defining entities and their properties in
themodel editor
Whether you create a new project that includes Core Data or integrate Core Data manually
into an existing project you use a .xcdatamodel file to define andmanage your Core Data

Donny Wals 45

Practical Core Data

data model. You use the model editor to define entities, their attributes, how those attributes
should be handled, relationships, and more. You also use the model editor to define di�erent
versions of your Core Data model. You will learn about model versions and migrations in
Chapter 9 - Updating your datamodel and performingmigrations.

For now, we’ll focus on defining your model without considering migrations. If, at any point,
Core Data is giving you a hard time about your datamodel being incompatible with themodel
that was used to create your persistent store, delete your application, and reinstall it. This
will wipe your existing Core Data store along with its underlying storage. Reinstalling will
start you o� with a fresh database. During the development of your application, this is o�en
the preferred way of updating your database until you’re ready to ship an update of your
application.

When you open the Core Data model editor for the first time you’ll see a blank model that
looks as follows:

Figure 7: An example of a blank model editor

In the middle of the screen, you can see the details of whatever it is that you selected on

Donny Wals 46

Practical Core Data

the le�-hand side. For example, when you select an entity you’ll see the entity’s attributes,
relationships, and its fetched properties. When you open a configuration, you’ll see all entities
that belong to that configuration. When you select a fetch request you’ll see all the predicates
that you’ve defined for the selected predicate.

If you prefer to look at your data model in a more visual representation that looks a lot like
traditional SQLite diagrams that youmay have seen before, you can change the Editor Style
in the bottom right corner. Apple calls this visual representation the Graph style. Each model
you define will be represented by a card-like view and relationships between objects are
visualized with arrows. I will show you a screenshot of this view once we’ve added an entity
and some attributes.

The sidebar on the right contains theDataModel inspector. This pane in the sidebar changes
its content depending on your selection. If you select an entity you can configure its name, its
class name, and whether Xcode should generate your managed object subclass (and how).
When you select an entity’s attribute you will see configuration options for that specific at-
tribute. If you select a relationship, you’ll see di�erent options to configure the relationship.

I’m sure you get the point. The Data Model inspector shows di�erent configuration options
depending on your selection.

In Chapter 1 - Taking your first stepswith Core Data you already learned that you can add a
new entity to your model by clicking the Add Entity button. When you’ve added a new entity
and you select it, you add new properties to it by clicking the + icon underneath the Attribute
section.

If you want to follow along with me in this chapter, create a new .xcdatamodel file and
add an entity to it. You can name it whatever you want but I will namemineMovie since I will
be modeling a very simple movie object.

If you’ve worked with a database like SQLite before, youmight be tempted to add an id to
yourmodel so you can uniquely identify yourmovie and establish relationships later. This isn’t
needed in Core Data. In Chapter 2 - Understanding Core Data’s building blocks I explained
that Core Data is not a database. Nor is it an SQLite wrapper. In many cases, you will not
need to add an id to your entity. If needed you can uniquely identify your entity through the
managed object id.

Of course, if your data model is shared with a back-end or needs some kind of a portable
identifier that also works on other platforms you can add an id. Just know that this identifier

Donny Wals 47

Practical Core Data

will not work like it would in a database. For example, youwon’t be able to have your identifier
incremented automatically, and it’s also not considered a primary key.

Anyway, enough about what you shouldn’t do. Let’s look at something we should be doing in
Core Data.

Everymovie has a title, so let’s add an attribute and name ittitle. Don’t worry about setting
its Type just yet. We’ll do that in a second. First, add somemore attributes for the following
fields:

• releaseDate
• rating
• duration
• watched

When you’re using the graph representation in the model editor, you should click the Add
Attribute button that’s at the bottom of the editor window to add attributes to your model.
Make sure you have the model that you want to add an attribute to selected before clicking
this button.

Here’s what the movie entity should look like a�er adding your properties when you’re using
the graph editor:

Figure 8: An example of Movie in the graph editor

Donny Wals 48

Practical Core Data

And this is what movie should look like if you’re using the default table editor:

Figure 9: An example of Movie in the table editor

To keep things simple, I will use the default editor as a reference point throughout the book.
You’ll see the grapheditor a couple of times in this chapterwhenwe’re discussing relationships.
You’re free to use whichever editor style you prefer.

If you’re using the default editor style, select the title property and set its type to String. If
you’re using the graph style, open the right-hand sidebar and select theDataModel inspector
to set the type of title to String.

You’ll notice that there are several String related properties that you can configure for the
title.

Donny Wals 49

Practical Core Data

Figure 10: An example of the data model inspector for a string

The first couple of properties that you can configure in the inspector are the same regardless

Donny Wals 50

Practical Core Data

of the datatype that you chose for an attribute. The Name field defines how you will refer
to your attribute in your managed object subclass. The Type represents the attribute’s data
type.

The Optional checkmark tells Core Data whether an attribute must have a non-nil value
when you attempt to save it to the persistent store. Core Data will perform validation on your
managed objects before it attempts to save them to the persistent store. Note that the value
of yourOptional checkmark does not have to match the optionality of the properties in your
managed object subclass as you’ll find out in the next section.

If you enable the Transient checkbox, Core Data will perform validation and change tracking
on the selected attribute but this attribute will not be persisted to the persistent store. This
is mostly useful if you have properties that are temporary, or are managed object context-
dependent somehowwithout needing to be persisted. I have personally not found a lot of use
cases where I needed a transient property but they can be useful when you need Core Data’s
change tracking and validation but not its persistence.

The Derived option is available on iOS 13 and above, and allows you to define attributes that
derive their value from other attributes on the entity. A derived attribute can be defined using
a handful of expressions to derive a value based on other properties that exist in your data
model. You can base your derived property based on one or more properties. For example,
you can use title, or director.namewhere title is a property of the entity itself, and
director.namewould traverse a relationship that’s defined on your entity.

It’s also possible to use functions like canonical:, lowercase: and uppercase: to
obtain a case- and diacritic-insensitive, lowercased, or uppercased string value of a property.
Alternatively, you can use @count or @sum on a property that represents a set of values. For
example cast.@count. Lastly, you can obtain the current time using now().

The result of evaluating your derived property will be its value. For example, if you added
a directedBy attribute that’s of type String and uses director.name as its expres-
sion, the value for directedBywill be the name of the director associated with the source
entity.

Note that a derived attribute is computed once and is only recomputed when you save or
explicitly refresh a context. Your managed object’s derived property does not update until the
managed object is refreshed within its context.

An option in the sidebar that’s only available for String is the ability to specify a default

Donny Wals 51

Practical Core Data

string, amin length, amax length, and a regular expression that the string is required tomatch
in order to be considered valid. These options all do pretty much exactly what their names
say they do so I won’t go over them in depth.

Uncheck the Optional checkbox for the movie’s title and let’s move on to the rating at-
tribute.

Make rating a Double and take a look at the Data Model Inspector. You’ll find that it
has similar options as String. You’ll also find that it has an interesting checkbox called
Use Scalar Type. This checkbox is selected by default and it changes how your property is
expected to be defined in your managed object model subclass. For Double unchecking this
checkboxmeans that the property will be generated by Xcode as an NSNumber. When the
checkbox is checked you will be able to use Swi�’s Double. I always recommend keeping
this checkbox in its default state so your code will be easier to work with. Since we don’t want
to provide a default value for rating, make sure you uncheck the Default checkbox for this
attribute.

Since I expect users to only provide a rating for the movies they’ve seen, this field should be
optional.

Next, select duration and make it an Integer 64. Every movie has a duration so this
field should be non-optional, and it should not have a default value. Make sure to uncheck
both the Optional and Default checkboxes. The Use Scalar Type checkbox should remain
active.

Next, selectreleaseDate andmake it aDate. Uncheck theOptional checkbox in theData
Model Inspector. Note that dates have similar validation options as other data types. You
can provide a default date and require a min. or max. date. We’ll leave all these options in
their default state.

The last property to configure is watched. Make that a Boolean, make it non-optional and
set its default value to NO. All movies in our store will be unwatched initially.

At this point, you have a pretty complete entity set up. The entity is simple and uses Core
Data’s built-in data types. While you were defining your model, you may have noticed that
there’s a data type available that I didn’t discuss; Transformable.

Let’s change that now and explore the transformable data type.

Donny Wals 52

Practical Core Data

Adding properties with arbitrary types to
your model
While you’re defining your Core Data model, you’ll find that every so o�en you run into sit-
uations where Core Data’s built in data types simply don’t cut it. For example, you might
want to have a property on your model that stores a UIImage, or maybe you want to per-
sist CLLocationCoordinate2D values if you’re working with an app that implements
location-based features. Youmight even want to have a property that holds an array of values
like [Int] or [String].

There are countless situations where the ability to store properties of an arbitrary type on
your entities would be useful.

In Core Data, you can do this by defining your attribute as Transformable.

Attributes that are transformable are persisted in the underlying store as binary data. This data
is converted to the appropriate typewhenneeded, allowing you touse almost any custom type
in yourmodel. I say almost any custom type because your custom typemust be representable
in Objective-C.

Before we go deeper into transformable, add a new property toMovie and name it poster-
Image. Make this property’s data type Transformable. We’re going to use this property to
store aUIImagebut Iwant to showyou theDataModel Inspector for transformable attributes
first.

Donny Wals 53

Practical Core Data

Figure 11: Data Model Inspector for a transformable attribute

The first couple of fields in the inspector should look familiar by now. The Transformer
and Custom class fields are new. These fields are where you configure your transformable
property’s generated type, and where you define the transformer that will be responsible for
transforming data to your desired type and the other way around.

Bydefault, you canuse anyobject that conforms toNSSecureCodingas your transformable
object’s Custom class and Core Data will know how to convert your attribute from and to
data. Just to see what this looks like, you can use [Int] as the type for posterImage. This
isn’t the type we wanted to use but we can use it to explore transformable values a little bit.

Donny Wals 54

Practical Core Data

Figure 12: A transformable property that has [Int] as its Custom class

When you’ve assigned [Int] as your transformable property’s Custom class, Core Data
will generate an NSManagedObject subclass that has a posterImage property of type
[Int]?. When you assign an array of integers to this property and you save the object, Core
Data will automatically convert your array to a binary data representation. When you access
posterImage a�er fetching a Movie, Core Data will automatically convert the binary data
representation back to an array of integers.

The beauty of this is that when you’re working with a transformable property, you don’t have
to worry about converting values from and to data.

While themethod of creating a transformable property I just showed you is convenient, it’s not
perfect. When you run an app that has transformable properties defined using the technique
I just showed you, you’ll see the following warnings in the Xcode console when you attempt
to save your object:

fault: One or more models in this application are using transformable
properties with transformer names that are either unset, or set
to NSKeyedUnarchiveFromDataTransformerName. Please switch to
using "NSSecureUnarchiveFromData" or a subclass of
NSSecureUnarchiveFromDataTransformer instead. At some point, Core
Data will default to using "NSSecureUnarchiveFromData" when nil
is specified, and transformable properties containing classes
that do not support NSSecureCoding will become unreadable.

↪→

↪→

↪→

↪→

↪→

↪→

↪→Donny Wals 55

Practical Core Data

To work around this, we’ll need to define a custom transformer that converts a value to data
and vice versa.

Let’s implement adata transformer that converts aUIImage toData, andData toUIImage
so we can use it for the posterImage.

When you define a value transformer for a transformable Core Data attribute, you should
start with a class that inherits from ValueTransformer. In this case, let’s start with the
following skeleton class:

class UIImageTransformer: ValueTransformer {

}

Tomake this class suitable for transforming our Core Data transformable attributes we should
override two of ValueTransformer’s methods:

• transformedValue(_:) to transform an input to Data
• reverseTransformedValue(_:) to transform Data to the appropriate output

The input and output for both methods should be the custom class that you define in the
model editor.

Note: If you subclass NSSecureUnarchiveFromDataTransformer instead
of ValueTransformer the roles of transformedValue(_:) and reverse-
TransformedValue(_:) appear to be inverted. I don’t knowwhy, but it’s something
I noticed while testing.

Unfortunately, we can’t use Swi�’s strong typing or generics for thesemethods. Bothmethods
that we need to implement take Any? as their input and they both return Any?.

Let’s look at the implementation for transformedValue(_:) first:

override func transformedValue(_ value: Any?) -> Any? {
guard let image = value as? UIImage
else { return nil }

Donny Wals 56

Practical Core Data

do {
let data = try NSKeyedArchiver.archivedData(withRootObject:

image, requiringSecureCoding: true)↪→

return data
} catch {

return nil
}

}

In this method, we check that the Any? that was provided as input is a UIImage and return
nil if it’s not. Next, the image is converted to Data using NSKeyedArchiver. This is the
easiest way to convert an image to Data. However, when you implement your own value
transformers, you can use anymethod you like to convert an object to Data. This includes
using Codable.

To convert Data to a UIImage, we need to implement reverseTransformed-
Value(_:). Here’s what that looks like:

override func reverseTransformedValue(_ value: Any?) -> Any? {
guard let data = value as? Data
else { return nil }

do {
let image = try NSKeyedUnarchiver.unarchivedObject(ofClass:

UIImage.self, from: data)↪→

return image
} catch {

return nil
}

}

This method uses NSKeyedUnarchiver to convert Data to a UIImage. The implementa-
tion for this method is pretty straightforward and shows just how powerful value transformers
in Core Data are.

Donny Wals 57

Practical Core Data

With these two methods, you have implemented everything that’s needed to provide the
required transformations for your model. Before you can use a value transformer you need
to register it by callingValueTransformer.setValueTransformer(_:forName:).
This method takes an instance of your value transformer and a unique identifier that should
match the transformer name that you’ll use in the Core Data model editor in a moment.

It’s important that you call this method before you attempt to use your value transformer. I
like to call it in my StorageProvider’s init before I initialize my persistent container:

class StorageProvider {
// properties...

init() {
ValueTransformer.setValueTransformer(UIImageTransformer(),

forName:
NSValueTransformerName("UIImageTransformer"))↪→

persistentContainer = NSPersistentContainer(name: "Chapter3")
//....

}
}

Notice that I have to wrap the identifier formy transformer inNSValueTransformerName
rather than passing a string directly.

The next step to use this value transformer is setting it as the Transformer for our property in
the model editor. Here’s what that looks like:

Donny Wals 58

Practical Core Data

Figure 13: The data model inspector for posterImage

When you’ve done all this and you build your project you’ll run into one last issue, and it’s a
big one too. Your project doesn’t compile because Xcode can’t find UIImage in the scope of
Movie. The reason for this is that UIImage is defined in UIKit and UIKit isn’t imported
in the generated model file.

To resolve this, you’d need to manually define your managed object subclass and import
UIKit in the file you create for your managed object. You’ll learn how to do this in the next
section.

The beauty of using a value transformer is that you can define and use your managed ob-
ject property as if it’s a property of your underlying type. For example @NSManaged var
posterImage: UIImage. Core Data will handle the conversion from and to data on your
behalf but bear in mind that this conversion is not always cheap. In this example I used a UI-
Image that’s converted by NSKeyedUnarchiver. In Chapter 10 - Debugging and profiling
your Core Data implementation you’ll learn that this is quite an expensive operation, and I’ll
show you some tips to improve performance in this case.

Donny Wals 59

Practical Core Data

Writing and generating
NSManagedObject subclasses
In Core Data, all entities that you want to use must be defined as an NSManagedObject
subclass. The easiest way to generate an NSManagedObject subclass is to use Xcode code
generation but it’s also possible to define subclasses by hand.

When you select your entity in the model editor outline, you can see that there are three
di�erent Codegen options under the Class section:

• Manual/None
• Class definition
• Category/Extension

Figure 14: Image of the Codegen dropdown

In this section, I’ll go over each option and explain when they are useful.

Using the Class definition Codegen option

The default Codegen option that Xcode uses is Class definition. With this option you don’t
need to worry about defining your managed object subclasses, nor do you need to worry
about keeping them up to date. Xcode will rebuild your managed object subclass every time
you compile your project.

Donny Wals 60

Practical Core Data

Tip: You can view the code that Xcode generated for you in your project’s derived data
folder. Deriveddata is typically locatedat~/Library/Developer/Xcode/DerivedData/
but your project might use a di�erent folder. In the derived data folder, you’ll
want to look for a folder that starts with your project name, and then go to
Build/Intermediates.noindex/YourProject.build/ and continue clicking until you see
a DerivedSources folder. In that folder, you’ll find a CoreDataGenerated folder that
contains a folder with your model name. Xcode stores your generated Core Data model
files in that directory. Note that it’s okay to take a look at these files but anymodifications
youmake will be overwritten the next time you compile your project.

Using Xcode’s default code generation is extremely useful if you don’t need any customization.
If the generated model works fine for you then by all means use Xcode’s code generation. You
can always define your models by hand later if needed.

If you build the app that contains the Movie entity you defined in the previous section, Xcode
will generate two interesting files for us. One of them contains a class definition for theMovie
managed object, and the other contains an extension that holds all the attributes that you
defined on the entity:

// Movie+CoreDataClass.swift
@objc(Movie)
public class Movie: NSManagedObject {

}

// Movie+CoreDataProperties.swift
extension Movie {

@nonobjc public class func fetchRequest() ->
NSFetchRequest<Movie> {↪→

return NSFetchRequest<Movie>(entityName: "Movie")
}

@NSManaged public var duration: Int64
@NSManaged public var rating: Double

Donny Wals 61

Practical Core Data

@NSManaged public var releaseDate: Date?
@NSManaged public var title: String?
@NSManaged public var watched: Bool

}

extension Movie : Identifiable {

}

Thedefinition inMovie+CoreDataClass.swift is very straightforward. It defines aSwi�
class called Movie and uses @obj(Movie) to explicitly expose this class to Objective-C
usingMovie as its class name. The@objc annotation is notmandatory if youwant to expose
your managed object to Objective-C using the same name as your Swi� class.

In Movie+CoreDataProperties.swiftwe’ll find somemore interesting information.
You can ignore the fetchRequest() class function for now. Instead, look at the properties
that were added in this extension.

Theyare allmarkedwith@NSManaged. Thismeans that theObjective-C runtimewill generate
getters and setters for these properties, and perform other Core Data related work that we
don’t need to know about. This annotation also allows Core Data to perform its faulting
behavior by fetching properties just in time when you need them.

You will learn more about faulting in Chapter 4 - Fetching and displaying data from a Core
Data store.

One thing youmight be wondering is why, and how, this extension is valid Swi�. Extensions in
Swi� can’t contain any stored properties yet this works without a hitch. The only di�erence
between the properties in this extension and stored properties in a class is the @NSManaged
annotation. And this is precisely why this code compiles. Swi� will happily accept that there
are Objective-C shenanigans happening so it doesn’t complain when we define properties
like this.

There are some interesting details regarding the optionality of the properties in this extension.
The only optional property in our model was rating. In the generated code, the rating is
a non-optional Double. The releaseDate and title are both optional. And the default

Donny Wals 62

Practical Core Data

value for watched that should be NO (or false) according to the model that we defined in
the editor earlier is nowhere to be found.

Surely this is a mistake, right?

Interestingly enough, it’s not a mistake. The optionality and default values that you define
in the Core Data model editor do not match 1:1 with the types used in your managed object.
This is mostly related to how your types will be expressed in Objective-C and ultimately the
underlying storage that Core Data uses.

It’s important to keep in mind that a managed object is always validated by Core Data when
you attempt to save the context it belongs to. This is where Core Data will use the information
that you defined in your data model file to determine if the managed object is valid. When
this validation succeeds, your managed object will save. If the validation fails, you will receive
a validation error.

It’s important to not get hung up on getting the optionality of your properties to match with
what youmodeled in your model file. TheOptional checkbox falls in the same category as
other configuration options like a minimum, or maximum string length or date. None of these
options can be expressed in Swi�’s type system and you should consider Optional one of
them even though Swi� has its own concept of Optional. All constraints that you define in
themodel editor are evaluated by Core Data when you save rather than at compile time by
the Swi� compiler.

It takes some getting used to but I promise you it’s okay. You’ll learn to accept this quirk over
time.

Using the Category/Extension Codegen option

The second, slightly more manual way to create your managed object subclasses
is by writing the managed object subclass yourself, but letting Xcode generate your
properties in an extension. In practice, this means that Xcode won’t generate the
Movie+CoreDataClass.swift file you saw earlier but it will still generate the extension
with all of your @NSManaged properties in it.

This option is useful if you need to define a custom initializer for your managed object, or if
you want to add a couple of unpersisted stored properties that shouldn’t participate in Core
Data’s change tracking and validation logic.

Donny Wals 63

Practical Core Data

A common reason to define a custom initializer I have found is to make an NSManagedOb-
ject conform toCodableby adding customencoding anddecoding logic to it. Youwill learn
more about this in Chapter 7 - Synchronizing your store with a remote data source.

Keep in mind that your project will not compile if you select this Codegen option but forget to
define your managed object subclass.

In theory, all you need to define is a Swi� class and your project will work just fine because
Xcode will add your @NSManaged properties in an extension:

class Movie: NSManagedObject {
// this is enough

}

If you need full control, the third and last Codegen option is probably what you’re looking
for.

Using the Manual/None Codegen option

If Xcode’s generatedmodels don’t suit you (which can happen for several reasons), you can
opt to write your own NSManagedObject subclasses. You can either do this by writing your
subclass from scratch, and defining all @NSManaged properties by hand, or you can have
Xcode generate a subclass that is added to your project for you. This is di�erent from the
standard code generation for two reasons. First, this generation runs only when you tell it to,
and it doesn’t update on every build. Second, the generated files are added to your project
rather than Derived Data.

To have Xcode generate a managed object subclass for you, open your Core Data model and
go to Editor -> Create NSManagedObject subclass.. . . A window will open to ask you which
data models you want to use. Select the model that contains the entity that you want to
generate a subclass for. Next, make sure the entity (or entities) that you want to generate a
subclass for are checked.

The next step is to have Xcode generate the files for you.

You can create a special folder for yourmodel files, but Xcodewill still add them to your project
root because your project’s file system structure and the project structure are not the same in

Donny Wals 64

Practical Core Data

Xcode. You’ll need to move your generated managed objects to an appropriate place in your
project by hand.

When Xcode generates a managed object subclass for you like this, you will get two files for
every entity. One that contains the managed object subclass declaration, and one with an
extension that holds all @NSManaged properties.

Note that you don’t have to use this structure. You could specify everything in a single file and
add the @NSManaged properties to the subclass declaration directly. You also don’t have to
specify the @objc class name if you want it to use the same class name you used for Swi�.
So for the Movie entity you created earlier, you could modify the generated code to look like
this (or write it from scratch):

public class Movie: NSManagedObject, Identifiable {
@nonobjc public class func fetchRequest() -> NSFetchRequest<Movie>
{↪→

return NSFetchRequest<Movie>(entityName: "Movie")
}

@NSManaged public var releaseDate: Date?
@NSManaged public var title: String?
@NSManaged public var duration: Int64
@NSManaged public var watched: Bool
@NSManaged public var rating: Double

}

Note that whenever youmake changes to your model you will need to either generate your
managedobject subclass again (andmodify it to yourneedswhenever changes youmadewere
overwritten) or you must update your subclass by hand. Usually, this isn’t much of a problem,
but it’s something to keep in mind when deciding between using Xcode’s auto-generated
subclasses or managing your own subclasses.

What’s interesting about defining and controlling your managed objects is that you’re free to
use slightly di�erent types than those that Core Data uses. I wouldn’t recommend this, but
you could replace Int64 here with Int if you wanted to.

This becomes especially interesting when you define relationships on an entity. Since
Objective-C doesn’t have Swi�’s Set and uses NSSet instead, Xcode will generate a property

Donny Wals 65

Practical Core Data

that uses an NSSetwhile you might prefer a Set. The main reason to prefer a Set is that
Set has a generic argument which means that you can specify which objects you store in
your set like this Set<MyObject>. With NSSet every item in your set is treated as Any
which is less than ideal because you have to cast elements in the set using as?. For this
reason, a Set is more convenient to work with than NSSet in my experience.

Speaking of relationships, let’s take a closer look at how relationships work in Core Data.

Managing relationships
Just like in a relational database, Core Data entities can have relationships with other entities.
These relationships are defined as properties that can either hold a single value, or multiple
values. In database terms, that means you can have a one-to-one, one-to-many, or many-to-
many relationship. Let’s go over these relationships briefly tomake surewe all knowwhat they
mean. Luckily, CoreData uses the same terminology as a traditional database for relationships.
So I’ll explain them using the SQLite terms I just mentioned.

A�er explaining what kinds of relationships you can define in Core Data I will explain how you
can define, and configure, relationships in the Core Data model editor.

Understanding Core Data’s di�erent relationships

In the introduction for this section I mentioned three di�erent types of relationships:

• one-to-one
• one-to-many
• many-to-many

A one-to-one relationship is a relationship where one record of a specific entity has a relation-
ship that points to another record. This other record could be of the same type as the first
record but it could also be a di�erent type of record. Both work.

An example of a one-to-one relationship is a typical monogamousmarriage in the western
world. Usually, when a person is married, they are only married to a single other person. And
this other person is only married to a single person which is the person that’s married to them.

Donny Wals 66

Practical Core Data

So if you’d have a Person entity, the entity can point to a single other Person entity to
establish a marriage. In other words, a one-to-one relationship.

A one-to-many relationship is a relationship where one record has a connection to multiple
other records. All of theseother records areof the same type. Anexampleof sucha relationship
is a single movie that might be reviewed by multiple critics. You can model this with a Movie
entity that points to multiple Review entities. A single movie can have multiple reviews, but
every review is always about a single movie.

The last relationship I want to cover is the many-to-many relationship. An example of a many-
to-many relationship is the relationship between an actor and their movies. You would model
this with an Actor and a Movie entity where both entities can point to multiple entities of
the other side of the relationship. In other words, an actor can play in more than onemovie
while a movie will typically have multiple actors in its cast.

We’ll set up one of each relationship in the next subsection where I explain how you can set
up relationships in the model editor.

Setting up a relationship in Core Data’s model editor

Before I explain how to set up relationships, I need you to add two new entities to the data
model that you created in the previous section. Instead of walking you through the steps, I
will give you a simple overview of the entities and their properties. I’m sure you’ll be able to
create these entities in the model editor. If you’re not sure, refer to the sample project for this
chapter.

Entity: Actor
- name: String (non-optional, no default value)

Entity: Character
- name: String (non-optional, no default value)

That shouldn’t be too hard, right? Two entities with a single non-optional property. We’ll
use these entities to set up a couple of relationships. First, let’s set up a many-to-many
relationship.

Donny Wals 67

Practical Core Data

Select the Movie entity and take a look at the Relationships section in the middle section.
Click the + and name the relationship cast. Under the Destination column, choose Actor
and leave the Inverse blank.

If you’re using the graph editor style, click and hold the Add Attribute button to make a
dropdown appear and choose Add Relationship. Alternatively, you can hold ctrl and drag
from your movie entity to the actor entity to establish a relationship.

Here’s what your relationship should look like in the default editor:

Figure 15: Screenshot of the relationships section for the Movie entity

And here’s the same relationship represented in the graph editor:

Figure 16: Screenshot of the cast relationship in the graph editor

Donny Wals 68

Practical Core Data

Note that there’s a relationship called newRelationship added to Actor in the graph
editor. This relationship is the inverse of the cast relationship on the movie entity and is
automatically added when you establish a relationship by holding ctrl and dragging from one
entity to the other.

The inverseof a relationship inCoreData is a relationship that is set up in theoppositedirection
of the original relationship. The best way to explain this is to set up the inverse for the cast
relationship. We’ll get to this in a moment. Core Data defines every relationship as a To One
relationship by default. This means that currently a movie only points to a single actor. Let’s
fix this by setting the Type checkbox in the Data Model Inspector to To Many. Don’t forget to
uncheck the Optional checkbox while you’re at it. We always require the property for this
relationship to be set. Even if we set it to be an empty list of actors.

Notice the Delete Rule dropdown in the Data Model Inspector. This dropdown specifies what
should happen to the other end of this relationship when you delete a record. There are four
options in this dropdown:

• No Action
• Nullify
• Cascade
• Deny

The first option in the list is No Action. When you use this delete rule, the target of this
relationship (actor in this case) is not notified of the deletion. So if you’d delete a movie, all
castmembers for that movie won’t be aware of this deletion and they will still point to the
(now non-existent) movie record. I have never found a need for this delete rule myself, and
while I’m sure there are valid use cases for this delete rule I have yet to discover them.

The default value isNullify. This will simply remove the reference to the record on the other
end of the relationship. So for example if we delete a movie record, that movie will be nulled
out for the other side of the relationship (which we’ll set up soon). For an actor, this would
mean that the movie is removed from its list of movies. This is, in my experience, the most
commonly used delete rule.

The Cascade delete rule is an interesting delete rule that is most e�ective for relationships
where the target of the relationship is a To One relationship. For instance, if you have config-
ured the relationship between Actor and Character as a one-to-many relationship where
one actor can play many characters but every character is only played by a single actor, it

Donny Wals 69

Practical Core Data

makes sense to delete all characters played by an actor when you delete the actor records. If
you would use Nullify in this example, the actor record would be deleted and you’d be le�
with a bunch of actor-less characters. This isn’t great and the cascade delete rule helps you
clean up these orphaned records.

Note that cascade is not themost appropriate delete rule for many-to-many relationships. For
example, when you delete a movie instance you wouldn’t want all of its actors to be deleted
too. An actor might have played in several other movies so the record is still very valid and
useful. Deleting the actor would be amistake in this case so it’d be better to use nullify for this
many-to-many relationship.

The fourth and final delete rule is Deny. This delete rule is useful if you want to make sure
that a record has nomore active/populated relationships before deleting it. For example, it
would make sense to prevent deleting a character if that character still has a relationship to a
movie. You wouldn’t want to accidentally delete one of the characters from amovie.

When you use the deny delete rule, you must first remove the records on the other end of the
relationship before you can delete the record itself. This delete rule is a neat way to help you
avoid performing accidental deletions that might hurt your app.

For the relationship between Movie and Actor that you just created you should use the
nullify delete rule. Whenwe delete amovie, we simplywant to remove it from the actor’s list of
movies. To create this list ofmovies, go to theActor entity and add a new relationship. Name
it movies and select Movie as its destination. Then click the Inverse and select cast to
establish the inverse relationship. Make sure tomark this relationship non-optional and select
To Many from the Type dropdown. For the delete rule, you can use Deny. We don’t want to
delete any actors as long as there aremovies that point to them. Note that the Movie’s cast
relationship now also has an inverse. Xcode automatically assigned this when you added an
inverse for movies.

Here’s what the relationship between Actor and Movie should look like in the graph edi-
tor:

Donny Wals 70

Practical Core Data

Figure 17: The relationship between Actor and Movie as shown in the graph editor

Notice that the arrow has two “tips” on each end. This is used to represent a to-many rela-
tionship on each end. A single “tip” is used to represent a to-one relationship. You’ll see an
example of this in a moment.

Core Data uses inverse relationships and delete rules as a way to maintain data integrity.
If you’re used to modeling data for relational databases you might be used to creating an
extra table to establish a many-to-many relationship. In Core Data this isn’t needed. Each
relationship is set up to point to one or many records on the other end of the relationship and
that’s all it needs to know. When both relationships are specified as To Manywe know that
we’ve defined amany-to-many relationship.

Next, add another relationship to Actor. Name it roles and set its destination to Char-
acter. This relationship is non-optional, should be To Many and the delete rule for this
relationship should be Cascade. When we delete an actor we’ll want to delete all of its charac-
ters too.

Next, go to the Character entity and add an actor relationship. Its destination is Actor
and its inverse isroles. This relationship is non-optional and you can keep the default delete
rule. You have now set up a one-to-many relationship between Character and Actor.

Lastly, we need a relationship between Character and Movie so we can easily associate
them with each other. Add a relationship to Character, name it movie and point it to

Donny Wals 71

Practical Core Data

Movie. This is another non-optional relationship and the delete rule for this relationship
should be Deny. We don’t want to remove characters if there’s still a movie pointing to them.
In real-life a character could of course appear in multiple movies. You’re free to mark the
movies relationship as To Many. It wouldn’t change any of the other rules that we’re about
to define.

On the Movie entity you need a relationship to act as an inverse for the relationship that
you just added to Character. Name it characters, make it non-optional and a To Many
relationship. The delete rule for this relationship should be Cascade. When amovie is deleted,
all of its characters should be deleted too. Note that thecast relationship uses thenullify
delete rule; we don’t want to delete actors when one of their movies is deleted.

The following screenshot visualizes the relationships between our three entities:

Figure 18: A visual representation of the relationships we’ve set up in this section

Notice how the arrow running from Character to Movie and Character to Actor both
have a single arrow tip. The reason is that Character has a to-one relationship to these
entities.

When we currently delete a movie, it would delete all of the characters associated with the
movie. This would in turn nullify the relationship between each deleted character and its actor.
This is powerful behavior and you gain this power simply by defining the correct delete rules.
Doing so isn’t easy, and it takes practice. I find that it’s o�en best to look at each delete rule in

Donny Wals 72

Practical Core Data

isolation by asking yourself “what should happen to a character when I delete a movie?” and
then only answering that question. When you try and look at the bigger picture the entire time
it’s easier to get lost and lose sight of the individual relationships. Of course, once you have
defined all your delete rules it makes sense to go through a couple of mental exercises to see
what happens when you attempt to delete a certain object under certain circumstances.

When you’re in doubt about any of your delete rules itmight be a good idea towrite a couple of
unit tests that describe and validate your imagined behavior. It’s the quickest way to validate
complex ideas, and to validate your defined delete rules. In Chapter 11 - Using Core Data in
your unit tests you will learn more about using Core Data in unit tests.

Using fetched properties
Fetched properties are special properties in Core Data. You can think of them as relationships
that aren’t explicitly defined, and only exist without an inverse.

Apple’s Core Data programming guide uses the term “weak relationship”.

While it’s important to understand these properties at a high level, I haven’t foundmuch use
for them in practice. It could be that I prefer a properly defined relationship over a fetched
property, or maybe I just haven’t run into the perfect use case yet.

That said, it’s good to examine them and see how they work rather than dismissing them as
something you probably won’t use.

A fetched property is added to an entity in the model editor under the Fetched Properties
section. When you add a new fetched property, you provide a name for it, and you provide
a predicate that is used to retrieve your property. In the Data Model Inspector pane for a
fetched property you can also specify what the destination entity is. In other words, this is the
type of the object that you want to retrieve using the predicate you specify for your fetched
property.

You will learn more about how you can use predicates in Core Data in Chapter 4 - Fetching
and displaying data from a Core Data store.

When you define the predicate for a fetched property, you have access to a $FETCH_SOURCE
and a $FETCHED_PROPERTYwhere the fetch source is the instance of your managed object
that the predicate is being evaluated for, and the fetched property represents the property

Donny Wals 73

Practical Core Data

description of the other end of the relationship. You can add information to an entity’s user-
Info dictionary through the data model inspector and access these properties through the
$FETCHED_PROPERTY attribute.

The result of evaluating your predicate is always an NSArray that contains objects of the
type that you selected as the destination for your fetched property.

An example of a fetched property that you could define on Character to fetch its actor if
the same name as the character would use the following predicate:

$FETCH_SOURCE.name == name

It’s a simple predicate, and its usefulness is questionable. A�er all, a character only has a single
actor so you could easily just check if actor.name == self.name in code. In fact, this
wouldn’t just be more convenient but you can also make it perform a lot better. You will learn
more about measuring and improving Core Data performance in Chapter 10 - Debugging
and profiling your Core Data implementation.

This predicate and example only serve to give you some idea of what a fetched property looks
like.

If you’re using a single persistent store (which youmost commonly will) there’s a good chance
that you never need a fetched property. In fact, if you’d tell me you needed a fetched property
I’d be skeptical and think there’s probably a better solution.

However, if you are using multiple persistent stores and you want to establish a relation-
ship between two objects that aren’t in the same store, a fetched property is your only way
of achieving this. You can’t establish an explicit relationship between objects in di�erent
stores.

You will see an example of multiple stores in Chapter 8 - Synchronizing your store with
CloudKit.

Possibly the most important thing to know about fetched properties is that they are lazily
evaluated, and that they are evaluated only once unless themanaged object that owns the
fetched property is refreshed within its context.

This means that when you access a fetched property for the first time, a fetch request is
fired and the persistent store coordinator will query the persistent store for the result of
your predicate. Once this result is retrieved it will not be updated automatically. You’ll need

Donny Wals 74

Practical Core Data

to callNSManagedObjectContext’srefresh(_:mergeChanges:)methodwith the
object that you want to re-evaluate the fetched property for.

Note that this will result in another trip to the persistent store. This means that if you’re
accessing lots of fetched properties in a short amount of time like you would in a table view,
your performancemight su�er since accessing the persistent store should be considered a
relatively expensive operation.

In short, fetched properties are a rarely needed Core Data feature, especially in the most com-
mon and simple setups. When you want to establish relationships across multiple persistent
stores you’re forced to rely on fetched properties but in my experience, this isn’t a feature I
would recommend to beginners.

Understanding abstract entities
When you created the entities for this chapter youmay have noticed a checkbox in the data
model inspector pane that’s labeled Abstract Entity. This checkbox is part of the inspector
for entities and it allows you to create a special kind of entity that can act as a parent for
other entities. Just like fetched properties, abstract entities are not a feature that I would
recommend to beginners since it’s rarely something you need, but let’s see what it does
anyway.

Let’s say you define an entity that shares almost all of its properties with another entity. For
example, if I stick with the entities we’ve been working with in this chapter, a movie and an
episode from a tv show would be a good example. Both have a title, a release date, actors,
a director, characters and other metadata that would apply to both entities. Of course, an
episode is very di�erent from amovie to the viewer, but if you look at them from a pure data
perspective they share a ton of information.

You candefine anabstract entity in theCoreDatamodel editor calledVideoItem, and addall
properties that are supposed to be shared betweenMovie andEpisode to theVideoItem
entity. In the Data Model Inspector you can then mark the entity as an Abstract Entity. This
means that VideoItem is not an entity that you will use directly, but instead it’s used as a
base for other entities. For example, the Episode entity.

To use the VideoItem entity as the base for Episode, you set its Parent Class in the Data

Donny Wals 75

Practical Core Data

Model Inspector to VideoItem.

When you build your project, and Xcode generates your Core Data models, it will gener-
ate a base class called VideoItem for you, and a class called Episode that inherits from
VideoItem. This means that Episodewill have all properties that VideoItem has.

Note that you don’t have to subclass VideoItem to make Core Data understand that
Episode is a sub-entity of VideoItem. The following image shows how the relationship
between your VideoItem and its children in themodel editor can di�er from your managed
object subclasses.

Figure 19: Diagram that demonstrates a possible subclass hierarchy and entity hierarchy

When you think of abstract entities, it’s tempting to consider them a quick and easy way to
eliminate duplicate work. Just create a base entity and have other entities inherit from it and
your good, right?

Well, not really. While abstract entities are nice and convenient it’s important to understand
that all entities that inherit from an abstract entity are stored alongside each other. When
using SQLite this wouldmean that bothMovie andEpisode records are persisted alongside
each other in the same table.

In some cases this is fine. Especially if you consider these entities to be two sides of the same
coin, and the concrete entities are only used to di�erentiate your entities from each other.
The concrete entities in this case are almost like a type enum that’s used to specify that a
certain entity is of a specific type.

Keep in mind though, that a sub-entity can add its own properties on top of what the abstract
entity defines. For example, I can add a season property to Episode that I don’t need on
Movie.

When you perform a fetch request, you can retrieve all instances of an abstract entity. This

Donny Wals 76

Practical Core Data

means that you can fetch all video items as VideoItem instances. When using these in-
stances, you can try to cast them to a sub-entity using Swi�’s as? like this:

if let movie = item as? Movie {
// we have a movie

} else if let episode = item as? Episode {
// we have an episode

}

This can be very useful when your goal is to have a list of mixed entities that, as mentioned
before, can be considered di�erent sides of the same coin.

Overall I have found that abstract entities are not a commonly used feature. They’re interesting
and have their uses, but they definitely don’t belong in every Core Data store. And they
definitely shouldn’t be treated as a form of subclassing.

In Summary
In this chapter, you learned a lot. First, you saw how you can set up a simple data model using
the model editor. You saw how you can let Xcode generate NSManagedObject subclasses
for you, and you learned that the properties and their configurations in themodel editor don’t
always match 1:1 with your managed object subclasses because they are used for di�erent
purposes and your managed properties must be expressible in Objective-C.

A�er that you learned how you can establish one-to-many, andmany-to-many relationships
in Core Data. You learned how you can cascade deletes of your relationships, and you saw
that Core Data establishes relationships in two directions. Next, you learned what fetched
properties are, and how you can add them to your entities.

You saw how you can create abstract entities to create a kind of entity hierarchy, and you
learned how this interacts with the underlying store. I also explained that this isn’t a feature
that you’ll use o�en, and that it shouldn’t be considered similar to subclassing in Swi�.

This was a fairly long chapter, and it contains a ton of information about modeling data in
Core Data. I highly recommend going over this chapter again if you feel like you need to clarify

Donny Wals 77

Practical Core Data

some doubts youmight have a�er reading it. In the next chapter, you will learn everything
you need to know about fetching data from your Core Data store.

Donny Wals 78

Practical Core Data

Chapter 4 - Fetching and displaying data
from a Core Data store
In Chapter 1 - Taking your first steps with Core Data I have shown you a very simple and
plain fetch request that was used to retrieve all records for a specific entity. You also learned
how you can add amanaged object to a managed object context, and save it to the persistent
storage. In the chapters a�er that, you learned a ton about how Core Data works, and how
you canmodel your data using the model editor.

In this chapter, you will learn much more about retrieving data from a Core Data store. I
will also briefly refresh your mind on storing records in a Core Data store. As a result, this is
the chapter where everything should start making sense. You have learnedmuch about the
underlying mechanisms at play in Core Data already. You will now, finally, get to see these
mechanisms in action.

I will go over the following topics in this chapter:

• Understanding how Core Data executes a fetch request
• Understanding what faulting is, and why it’s important
• Filtering and sorting results with Predicates and sort descriptors
• Fetching data using NSFetchedResultsController

By the end of this chapter, you will be able to start integrating Core Data in your apps. You’ll
know the fundamentals, and how to apply them. Of course, there is muchmore to cover in
the chapters a�er this one, but I think this chapter is where your Core Data adventures start to
take shape.

Understanding how Core Data executes a
fetch request
You already know that every fetch request you create in Core Data should be executed by a
managed object context. The following code is an example of this:

Donny Wals 79

Practical Core Data

let request: NSFetchRequest<Movie> = Movie.fetchRequest()
let movies = try? viewContext.fetch(request)

The code for this fetch request is simple enough, but what happens when this runs? How does
the managed object context process this fetch request, and how does it obtain the result of
your fetch request.

In Chapter 2 - Understanding Core Data’s building blocks you learned that a Core Data
stack contains several core components that are contained within a persistent container:

• A persistent store coordinator
• The NSManagedObjectModel
• At least one managed object context (the viewContext)

You also learned that a persistent store coordinator is responsible for retrieving data from the
underlying persistent storage in your Core Data stack (usually an SQLite store).

When you ask a managed object context to perform a fetch request it will convert your re-
quest to an NSPersistentStoreRequest. This request is passed to the persistent store
coordinator’sexecute(_:with:)method. Thismethod takesanNSPersistentStor-
eRequest and amanaged object context as its argument.

Depending on your stack’s underlying storage, the persistent store coordinator will translate
the persistent store request into an SQLite query, or another appropriate method of querying
the underlying store.

Note that persistent store requests are not only used for retrieving data. They are also used to
persist data when you save your managed object context.

A�er translating the request into an appropriate query, the persistent store coordinator will
retrieve records, createmanagedobjects and it associates themwith theappropriatemanaged
object context.

The following image is a visual representation of this process:

Donny Wals 80

Practical Core Data

Figure 20: Schematic of how a fetch request is executed

Here’s where it gets interesting though. The managed objects you get back as a result for
your fetch request are not fully populated. Core Data calls these objects faults. A fault in Core
Data is a placeholder object for your data. This means that it has its objectID set, and the
underlying data might exist in memory (more on that in Chapter 5 - Using Core Data in a
multithreaded environment) but your @NSManaged properties are not populated yet. This
is an optimization that Core Data uses to limit your app’s memory usage by not keeping more
data in memory than needed.

Let’s take a closer look at faulting.

Exploring Core Data’s faulting behavior

A fetch request will, by default, fetch objects as faults. This means that Core Data will mate-
rialize your objects using as little data as possible to keep a small memory footprint. When
you access a property of a managed object that is a fault, the managed object context will
populate your managed object’s managed properties. This process of populating a fault’s
properties is commonly referred to as firing a fault.

When you fire a fault, a couple of things can happen. First, the requested fields may exist in
Core Data’s cache. If this is the case, all required data is read from this cache and the fault is

Donny Wals 81

Practical Core Data

fulfilled instantly. The second scenario is that the required data does not exist in Core Data’s
cache yet. This is common when you access a property that represents a relationship to a
di�erent entity. When this happens, a fetch request is automatically executed to retrieve the
required data from the underlying store and the fault is fulfilled accordingly.

Core Data’s faulting behavior ensures that your object graph’s memory footprint is as small as
possible. If Core Data would always load fully materialized objects, your app’s memory usage
would bemuch larger than when you only keep the bare minimum of data in memory.

Note that a fulfilled fault can go back to being a fault at (virtually) any time. For example,
when you call refresh(_:mergeChanges) on your managed object context to refresh
a managed object with data from the persistent store, the managed object will go back to
being a fault. This is very useful if a secondmanaged object context persisted changes for a
specific managed object that’s shown in the UI and you don’t want to automatically merge all
changes that were made to all of your managed objects into your viewContext.

When you have a managed object that exists as a fault a�er refreshing it, accessing one of its
properties will fire the fault and updated data will be retrieved from either Core Data’s cache,
or the persistent store. In the case of a newly refreshedmanaged object, it’s safe to assume
that data will be loaded from the persistent store instead of the cache.

When youmake a fetch request, you have control over Core Data’s faulting behavior. If you
know that you’ll be retrieving a small dataset, and that you will always fire all faults in that
dataset, it might make sense to tell Core Data to fetch fully materialized objects rather than
faults. This can potentially save you several trips to the persistent store, but it will surely save
you some trips to Core Data’s row cache.

You can fetch results as fullymaterialized objects by setting your fetch request’sreturnsOb-
jectsAsFaults to false. This will result in a larger memory footprint for your dataset,
but depending on how you plan to use the dataset this might not be a bad thing. Especially if
you already know all faults will fire soon a�er performing your fetch.

Setting returnsObjectsAsFaults to false does not change how Core Data handles
relationships. When you traverse a relationship and access properties of the object on the
other end of the relationship, you are still firing a fault. Usually, this is a good thing because
like I said before, you want to use as little memory as possible.

However, there are cases where you know that you’re going to traverse one or more relation-
ships no matter what. For example, when you’re rendering a list of movies and you want

Donny Wals 82

Practical Core Data

to show the directors’ names alongside eachmovie. If directors are stored as a Director
entity, and Movie has a directors property that establishes a to-many relationship with
Director, it makes sense to configure your fetch request to always preload the direc-
tors relationship as a performance enhancement. You can do this using a fetch request’s
relationshipKeyPathsForPrefetching property. This property takes an array of
keypaths that represent relationships on the object that you created a fetch request for.

For example, to prefetch the directors relationship you could use the following code:

myFetchRequest.relationshipKeyPathsForPrefetching = ["directors"]

Note that optimizations like these should only be applied if you’re having problems with your
application’s performance due to faulting. When your application has no performance issues I
strongly recommend using Core Data’s default faulting behavior because it ensures that your
application’s memory footprint is as small as possible.

The concept of faulting might take a while to fully settle in your mind. I remember that it
took me a while to understand and accept that managed objects have a significant amount of
extra functionality that is abstracted away by Core Data and the @NSManaged annotation.
What’s most important to understand is that you should typically not care or notice whether
accessing a property on amanaged object causes a fault to fire or not.

While data for a specific property you access might not be materialized when you access that
property, it will be materialized synchronously and you will immediately receive the correct
result regardless of whether Core Data had to make a trip to the persistent store or if the data
was available in Core Data’s cache.

If you’re using Core Data in a multithreaded environment you can run into some interesting
behavior surrounding faults where one context might have changed data, or even deleted a
record from the persistent store while the other context holds a fault for this managed object.
Firing this fault might be problematic if Core Data has to retrieve the underlying data from the
persistent store if the data was deleted by a di�erent context.

Problems like these can be fixed using a Core Data feature called Query Generations. You will
learn more about this feature in Chapter 5 - Using Core Data in a multithreaded environ-
ment because I don’t want to burden you with considering multiple managed object contexts
in an application just yet.

Donny Wals 83

Practical Core Data

Filtering and sorting results with
Predicates and Sort Descriptors
When you fetch data froma persistent store, you’re usually not interested in fetching all data in
the store. If you were, you’d probably not be using a persistence framework like Core Data and
instead, you’d write all your data to a JSON file that you load into your application’s memory
on launch.

When you create a fetch request in Core Data, you always create a fetch request for a specific
entity. For example, a Movie, or an Actor. This entity will be the base from which your
entire fetch request is built. Any relationships are traversed and retrieved based on this entity
and any filtering or sorting is applied with your base entity as its root.

If you’re familiar with the NSPredicate class, you’re familiar with Core Data’s filtering
mechanism. If you only want to fetch movies that were released a�er a specific date, or if you
want to fetchmovies that feature a specific actor, or actors that were born a�er a specific date,
you express this using predicates.

The NSPredicate class is a powerful API that allows you to define incredibly complex
predicates using format strings and even other predicates. That’s right, you can build a
predicate by combining several other predicates into a compound predicate.

Throughout this book, you will find several examples of predicates since it’s howwe filter data
in Core Data. For that reason, I will not be showing you every single type and kind of predicate
youmight ever want to write in this section. Instead, I will introduce you to the basics of the
NSPredicate API and I will show you how you can construct several predicates.

A�er showing you how to use NSPredicate I will also show you how to sort the results of a
fetch request using NSSortDescriptor.

Nomatter how complicated your predicates are, they are shaped the same. They are all based
on a format string and (if applicable) they take a list of arguments to use inside the format
string:

// someDate would be a date object that represents the movie's max
age↪→

let oldMoviesPredicate = NSPredicate(format: "%K <= %@",

Donny Wals 84

Practical Core Data

#keyPath(Movie.releaseDate),
someDate as NSDate)

This predicate is pretty simple and plain. You’ll find that most of your predicates aren’t much
more complicated than this which is great. Note that you can’t use a Date directly in your
predicate when you write it like this because Date isn’t a CVarArg. NSDate, however, is
and we can bridge from Date to NSDate freely using typecasting.

When building a predicate, you use placeholders like %K and %@ to mark where you want to
insert a keypath or variable that replaces the %K and %@ respectively. In this case, we want
to replace %K with a keypath that represents the movie’s release date. The %@ is replaced
with someDate to represent that the movie’s release date must be before a given date. If
you have multiple placeholders in a fetch request, they will be replaced in the order that the
predicate’s arguments were passed in.

Instead of %K you could also use a string that represents the keypath. In this case that means
replacing %K in the predicate with releaseDate. While it’s perfectly legal to do this, I would
not recommend it. Keypaths are a much safer mechanism to build your predicates since they
help you avoid typos.

It’s possible to write a predicate that has multiple requirements. For example, you could write
a predicate that ensures a movie has a release date that’s between two dates as follows:

// upperBound and lowerBound are both dates to specify the movie's
max and min age↪→

let moviesPredicate = NSPredicate(format: "%K <= %@ AND %K >= %@",
#keyPath(Movie.releaseDate),
upperBound as NSDate,
#keyPath(Movie.releaseDate),
lowerBound as NSDate)

You can use the AND and OR keywords to join predicates together, much like how you would
use || and && in an if-statement. You can use parentheses to group a part of your predicate in
the same way you would do this in an if-statement. For example, if you want to fetch movies
with a release date between an upper and lower bound, or where the rating is higher than a
minimum value you would write the following predicate:

Donny Wals 85

Practical Core Data

// upperBound and lowerBound are both dates to specify the movie's
max and min age↪→

let moviesPredicate = NSPredicate(format: "(%K <= %@ AND %K >= %@) OR
%K > %@",↪→

#keyPath(Movie.releaseDate),
upperBound as NSDate,
#keyPath(Movie.releaseDate),
lowerBound as NSDate,
#keyPath(Movie.rating), minRating)

This predicate matches any movie that has a release date that fits our bounds or has a rating
that’s higher than some value.

I’m sure you can see how you can build really complex and interesting predicates that are
based on just the three examples that I’ve shown you so far. Let’s take it one step further and
traverse a relationship in a predicate. Imagine that we want to find all Character records
that occur in movies that start with the word Star. The Character entity has a to-one
relationship with Moviewhich means that every Characterwill have just a single movie
associated with it.

Let’s take a look at a predicate that finds all characters that occur in a movie that starts with
the word Star:

let starPredicate = NSPredicate(format: "%K BEGINSWITH[cd] %@",
#keyPath(Character.movie.title),

"Star")↪→

You can traverse relationships in a predicate simply by providing the relationship name and
property that you’re looking for. This works because we’re using keypaths in predicates. The
keypath movie.title exists on Character and Core Data can translate this predicate to
a query that works with its underlying storage. To find movies who’s name have a specific
string prefix, I use the BEGINSWITH keyword. Since we’re working with a string, I pass two
options to this keyword: c and d. These two options make the predicate case and diacritic
insensitive. In other words, this will also match star and stár rather than just Star. You’ll
want to pass [cd]when comparing strings in almost all cases. Especially if you’re using user
input for your predicate.

Donny Wals 86

Practical Core Data

So far I’ve shown you predicates where you want your predicate to be true. But what if you
want to achieve the opposite? Let’s say you want to find movies that don’t start with Star.
You can use the NOT keyword for this:

let noStarPredicate = NSPredicate(format: "NOT %K BEGINSWITH[cd] %@",
#keyPath(Movie.title), "Star")

This predicate will match all movies that don’t begin with Star, star, or any other valid
variation of Star.

One last NSPredicate feature that I want to show you is NSCompoundPredicate.

When you’re building a complex predicate that has many components it can be really easy to
lose track of things. Longer predicates can be hard to read, and hard to maintain. A perfect
recipe for bugs. Ormaybe you end up building a screenwithmany filters that a user can toggle
on or o� where each toggle can be considered a predicate. You could consider building this
long string by hand, but a compound predicate will do a much better job of helping you build
your query.

A compound predicate in Core Data is built by combining two ormore regular predicates using
an AND, OR or NOT rule. For example, we can recreate a predicate that you saw earlier using a
compound predicate:

// before
let oldPredicate = NSPredicate(format: "(%K <= %@ AND %K >= %@) OR %K

> %@",↪→

#keyPath(Movie.releaseDate),
upperBound as NSDate,
#keyPath(Movie.releaseDate),
lowerBound as NSDate,
#keyPath(Movie.rating), minRating)

// after
let minDatePredicate = NSPredicate(format: "%K >= %@",

#keyPath(Movie.releaseDate),
lowerBound as NSDate)

let maxDatePredicate = NSPredicate(format: "%K <= %@",

Donny Wals 87

Practical Core Data

#keyPath(Movie.releaseDate),
upperBound as NSDate)

let dateBetween = NSCompoundPredicate(andPredicateWithSubpredicates:
[minDatePredicate, maxDatePredicate])↪→

let ratingPredicate = NSPredicate(format: "%K > %@",
#keyPath(Movie.rating), minRating)

let moviesPredicate =
NSCompoundPredicate(orPredicateWithSubpredicates: [dateBetween,
ratingPredicate])

↪→

↪→

This is a lot more code, and I wouldn’t recommend that you build every predicate that has
multiple clauses like this. It’s especially useful if, for example, youruser canchoose tonot apply
specific filters. For example, the user might not provide a lowerBound or upperBound
for a movie’s release date. You could conditionally create each predicate and combine them
using a compound predicate:

let dateBetween: NSCompoundPredicate?
var dateClauses = [NSPredicate]()

if let lowerBound = lowerBound {
let minDatePredicate = NSPredicate(format: "%K >= %@",

#keyPath(Movie.releaseDate),
lowerBound as NSDate)

dateClauses.append(minDatePredicate)
}

if let upperBound = upperBound {
let maxDatePredicate = NSPredicate(format: "%K <= %@",

#keyPath(Movie.releaseDate),
upperBound as NSDate)

dateClauses.append(maxDatePredicate
}

if !dateClauses.isEmpty {
dateBetween = NSCompoundPredicate(andPredicateWithSubpredicates:

dateClauses)↪→

Donny Wals 88

Practical Core Data

} else {
dateBetween = nil

}

This clearly does not make our code shorter, but I did want to show you this since compound
predicate can be extremely useful when you’re building a complicated filter that’s much easier
to maintain when broken up into smaller bits and pieces.

Before wemove on to sorting a fetch request, I quickly want to show you how you can limit
the number of items that a fetch request returns.

A fetch request will, by default, always fetch all items that match your predicate (if you supply
one). When you’re dealing with a large data set this might not be what you’re looking for. For
example, if you only need a top 10 most popular movies, it’s pretty wasteful to fetch a list that
contains hundreds of movies. Core Data uses faulting to keep its memory footprint as low as
possible, but it’ll still have to retrieve all results from the persistent store when executing your
fetch request.

To prevent this, you can set the fetchLimit on your fetch request. For example, to limit
the number of returned items to 10 you would do the following:

let fetchRequest: NSFetchRequest<VideoItem> =
VideoItem.fetchRequest()↪→

fetchRequest.fetchLimit = 10

While this is already useful on its own, you can take it one step further and use this property
to paginate your fetch requests. To do this, you can set your fetch request’s fetchOffset
to the number of items that you’d want to skip when fetching results. So for example, to fetch
items 11-20 from a store you’d write the following code:

let fetchRequest: NSFetchRequest<VideoItem> =
VideoItem.fetchRequest()↪→

fetchRequest.fetchLimit = 10
fetchRequest.fetchOffset = 10

And for items 21-30:

Donny Wals 89

Practical Core Data

let fetchRequest: NSFetchRequest<VideoItem> =
VideoItem.fetchRequest()↪→

fetchRequest.fetchLimit = 10
fetchRequest.fetchOffset = 20

You can even capture this in a reusable function quite nicely:

// first page is at index 0
func fetchPage<T: NSManagedObject>(_ pageIndex: Int, pageSize: Int,

for request: NSFetchRequest<T>,
using context:

NSManagedObjectContext) throws -> [T] {↪→

request.fetchLimit = pageSize
request.fetchOffset = pageSize * pageIndex

return try context.fetch(request)
}

Pretty neat, right?

There’s one crucial part to get right when you want to paginate fetch requests though; sort-
ing.

If you don’t sort your fetch requests, the ordering of the items you fetch from Core Data is
undefined. To sort a fetch request we use NSSortDescriptor objects. Let’s jump straight
into an example that sorts video items by their rating in descending order:

let request: NSFetchRequest<VideoItem> = VideoItem.fetchRequest()
request.sortDescriptors = [

NSSortDescriptor(keyPath: \VideoItem.rating, ascending: false)
]

A fetch request’ssortDescriptors takes an array of NSSortDescriptor objects. Each
sort descriptor takes a keypath which maps to a property on your entity and you must specify

Donny Wals 90

Practical Core Data

whether you want to sort ascending or descending. In this case I want to sort in descending
order. Note that the NSSortDescriptor takes a proper Swi� keypath using the \ notation.
Unfortunately, I couldn’t get this approach to work with CVarArgs in a predicate which is
why I use #keyPath notation there.

When I encounter two video items with the same rating I’d like to have those items sorted
based on their release date in ascending order so the newest movie comes first. I can do this
by using an array that contains two sort descriptors:

let request: NSFetchRequest<VideoItem> = VideoItem.fetchRequest()
request.sortDescriptors = [

NSSortDescriptor(keyPath: \VideoItem.rating, ascending: false),
NSSortDescriptor(keyPath: \VideoItem.releaseDate, ascending: true)

]

Note that sort descriptors are applied in the order that you specify them in. In this case that
means I sort on rating first, and release date second. If I would reverse these sort descriptors I
would get a list of videos from new to old where records that share the same release date are
sorted based on their rating.

If you forget to supply a sort descriptor you could see some interesting random ordering occur
every once in a while, and if you use fetchLimit and fetchOffsetwithout sorting you
might find yourself with duplicate results due to this random ordering. Usually everything
will work fine though, which is also why it can be tricky to discover that you forgot to supply a
sort descriptor.

Fetching data using NSFetchedResultsController

Configuring your fetch requests with afetchLimit,fetchOffset, andsortDescrip-
tors to build a list of items is a good idea, especially if you have a potentially large data set
that you want to show. Implementing all of this costs some e�ort though. Managing your
pagination, sorting, and updating the list if new items are added or removed to/from your
store can be a tedious task that involves a lot of repetitive work.

Luckily, Apple has added a powerful component to Core Data that’s called an NS-
FetchedResultsController. This object is configured with a fetch request and will

Donny Wals 91

Practical Core Data

retrieve all matching data using e�icient pagination. Most importantly, a fetched results
controller will automatically inform you about any changes that were made to the result of
your fetch request, allowing you to update your view accordingly.

The NSFetchedResultsController is mostly relevant in a UIKit environment. It can be
used in a Swi�UI environment, but in Swi�UI it’s mostly replaced by the @FetchRequest
property wrapper which uses NSFetchResultsController under the hood as far I can
tell.

In this section, Iwould like to introduceyou toNSFetchedResultsController first. Iwill
show you how you can use NSFetchedResultsControllerwith both UIKit and Swi�UI.
For both UI frameworks I will show you the most optimal solutions that I have found so far. I
will also showyouhowyou can achieve the samee�ect in Swi�UI using the@FetchRequest
property wrapper instead of an NSFetchedResultsController.

There’s a completed project in this chapter’s code bundle for both Swi�UI and UIKit. Both
apps feature a debug tab with a button that imports a bunch of dummymovie data so you
have something to show in your table view or list.

Using a fetched results controller in a UIKit app

As with virtually anything in app development there are many ways to use a fetched results
controller in aUIKit app. In this section, Iwould like to showyouanapproach that usesmodern
iOS 13+ APIs likeUICollectionViewDiffableDataSource andNSDiffableData-
SourceSnapshot. For theUI portionof this example Iwill use iOS 14+APIs likeUICollec-
tionView.CellRegistrationandUICollectionLayoutListConfiguration.
I will show you how to wrap your NSFetchedResultsController in a lightweight wrap-
per that hides complexity from your view controller and increases the portability of your code.
I’ll show you the abstraction first. A�er that, I’ll briefly show you how you can use it in an
app. For a more fleshed out example, you can look at the finished project in the Chapter 4
workspace in the code bundle.

The abstraction I will show you builds upon the idea of aStorageProvider that I’ve shown
you earlier in the book. It wraps an NSPersistentContainer and can be used to provide
convenient methods for fetching data if needed. We won’t be adding anything to Storage-
Provider in this section but we’ll use it to gain access to a managed object context. The

Donny Wals 92

Practical Core Data

abstraction I want to show you should be called MoviesProvider and uses the following
skeleton implementation:

class MoviesProvider: NSObject {
let storage: StorageProvider
fileprivate let fetchedResultsController:

NSFetchedResultsController<Movie>↪→

@Published var snapshot: NSDiffableDataSourceSnapshot<Int,
NSManagedObjectID>?↪→

init(storageProvider: StorageProvider) {
self.storage = storageProvider
super.init()

}
}

There are two interesting properties in this skeleton: fetchedResultsController and
snapshot. Thesnapshotproperty is a publishedproperty thatwe can subscribe to sowe’ll
receive new NSDiffableDataSourceSnapshot instances when they become available.
I won’t go into detail about what a di�able data source snapshot is in this book. If you want to
learn more, I would like to point you to this post onmywebsite that explains how you can
use di�able data sources in depth.

The second interesting property is fetchedResultsController. This property is an
instance of NSFetchedResultsController<Movie>. In other words, it’s a fetched
results controller that will fetch Movie objects. This looks very similar to how you define an
NSFetchRequest. The main di�erence between the two is that fetched result controller
has tons of extra features.

Let’s complete the initializer and set up the fetched results controller:

init(storageProvider: StorageProvider) {
self.storage = storageProvider

let request: NSFetchRequest<Movie> = Movie.fetchRequest()

Donny Wals 93

https://www.donnywals.com/modern-table-views-with-diffable-data-sources/

Practical Core Data

request.sortDescriptors = [NSSortDescriptor(keyPath:
\Movie.popularity, ascending: false)]↪→

self.fetchedResultsController =
NSFetchedResultsController(fetchRequest: request,

managedObjectContext:
storageProvider.persistentContainer.viewContext,↪→

sectionNameKeyPath: nil, cacheName:
nil)↪→

super.init()

fetchedResultsController.delegate = self
try! fetchedResultsController.performFetch()

}

In this initializer, I set upa fetch request. This request is usedby the fetched results controller to
retrieveourmovieobjects. The fetch request canbeconfigured just like anyother fetch request.
You can add predicates, sort descriptors, batch limits and more. Note that it’s mandatory
to configure your request’s sortDescriptors if you want to use it with a fetched result
controller. Since a fetched results controller will keep track of your fetch request and notify
you of any changes, insertions or deletions within your results, it needs to know how your
objects are sorted.

When creating an instance of a fetched results controller you pass it a fetch request and the
managed object context that should be used to execute the fetch request in. You’ll almost
always want to use the viewContext here so you can use the fetched objects in a table- or
collection view. You can also pass asectionNameKeyPath andacacheName if needed.

The sectionNameKeyPath is a key path that points to a property on yourmanaged object.
When you pass a sectionNameKeyPath the fetched results will be grouped using this key
path and divided into sections that you can use in your UI.

The cacheName property should be set if you want the fetched results controller to cache
information about your sections so the fetched result controller doesn’t have to recompute
more than needed. By default the cache name is nil and the fetched results controller will

Donny Wals 94

Practical Core Data

track and recompute section information inmemory. Inmy experience, this is usually fine, but
if you have lots of sections, lots of data, or if recomputing sections is an expensive operation
in your case, it would make sense to set a cacheName so the fetched results controller can
cache its computed data in a file rather than keeping them in memory.

Note that you should not use a cache if you plan to makemodifications to the fetch request
that is used by the fetched results controller. For example, you shouldn’t use a cache if you
want to change your fetch request’s predicate. This is very common when you use a fetched
results controller in conjunction with a filter screen that allows your user to apply filters to
a data set. If you do need a cache in this case youmust call deleteCache(withName:)
on your fetched results controller before assigning it a new fetch request with your updated
predicates. It’s also important to understand that caches can be shared between fetched
result controllers. For this reason, you need to make sure that you give every fetched result
controller a unique cache name unless you explicitly want your fetched result controllers to
share a cache.

Back to the code I just showed you.

A�er callingsuper.init I set the fetched result controller’s delegate. By doing this I activate
the fetched result controller’s change tracking. This means that the fetched result controller
will inform its delegate any time one of its managed objects changes, a new object is inserted,
or if an object is deleted. The fetched results controller’s change tracking capability is the
main reason you’ll enjoy using a fetched results controller, because it makes it amazingly
straightforward to always have an up-to-date UI. Lastly, I call performFetch on the fetched
results controller to make it fetch its initial data set.

At this point MoviesProvider does not conform to NSFetchedResultsCon-
trollerDelegate so the code doesn’t compile yet. Let’s fix this:

extension MoviesProvider: NSFetchedResultsControllerDelegate {
func controller(_ controller:

NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith snapshot:
NSDiffableDataSourceSnapshotReference) {

↪→

↪→

↪→

// process changes
}

}

Donny Wals 95

Practical Core Data

The delegate method that I’ve added here was added in iOS 13 and allows you to obtain
di�able data source snapshots that represent the updates in a fetched result controller’s
fetched objects. We’ll use this delegate method to update the movie provider’s snapshot
property which will send the new snapshot to subscribers of the $snapshot publisher.

Before I show you how to implement this delegatemethod I’d like to briefly explain all delegate
methods that are part of NSFetchedResultsControllerDelegate:

• controllerWillChangeContent(_:) this method is called when the fetched
results controller detects changes in the managed object context and starts processing
them.

• controller(_:didChange:at:for:newIndexPath:) informs the delegate
that an object at a specific index pathwasmoved to a new index path, updated, inserted
at an index path, or deleted.

• controller(_:didChange:atSectionIndex:for:) informs the delegate
that the information for a certain section has changed.

• controllerDidChangeContent(_:) this method is called a�er the fetched re-
sult controller processed all changes. The delegate has also been notified of all changes
through the twomethods listed above this one.

• controller(_:didChangeContentWith:CollectionDifference<NSManagedObjectID>)
this method is called with a CollectionDifference object that describes all
changes. Thismethod isonly called ifcontroller(_:didChangeContentWith:NSDiffableDataSourceSnapshot)
is not implemented and the sectionNameKeyPath for your fetched result controller
is set to nil. If this method is implemented the first four delegate methods listed
above will not be called.

• controller(_:didChangeContentWith:NSDiffableDataSourceSnapshot)
this method is called when the fetched result controller has generated a new snapshot.
It’s called a�er an initial fetch but also when any changes to the result set are detected.
If this method is implemented none of the delegatemethods above are called.

Since we’re going to use di�able data sources in this section I will only implement the last
delegate method on the list.

The most basic implementation of this delegate method would look as follows:

Donny Wals 96

Practical Core Data

extension MoviesProvider: NSFetchedResultsControllerDelegate {
func controller(_ controller:

NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith snapshot:
NSDiffableDataSourceSnapshotReference) {

↪→

↪→

↪→

self.snapshot = newSnapshot as NSDiffableDataSourceSnapshot<Int,
NSManagedObjectID>↪→

}
}

This code converts the snapshot reference to an NSDiffableDataSourceSnap-
shot<Int, NSManagedObjectID> and assigns it to self.snapshotwhich triggers
the $snapshot publisher. Note that this snapshot type is not one that I used by choice. It’s
the type of snapshot that is generated by a fetched results controller. Casting to a di�erent
type of snapshot, likeNSDiffableDataSourceSnapshot<Int, Movie>would crash
the app because NSManagedObjectID can’t be converted to Movie.

When you use this way of working with the snapshot it will work fine most of the time, but
unfortunately not always. Since the fetched result controller generates snapshots that use
NSManagedObjectID as its object identifier, it will only reliably pick up inserted objects,
deleted objects and objects that were moved from one index to another. Changes to objects
that weren’t moved will not be detected. This means that if you update a managed object
where the update doesn’t impact the object’s position in your data set, the fetched results con-
troller will notice this properly. It will call controller(_:didChangeContentWith:)
because it picks up a change, but when you apply the new snapshot to your UI nothing
happens.

Luckily, we can do some post processing on the old and new snapshots to find objects that
weren’t moved but did receive updates and tell the new snapshot to reload those objects
explicitly which will ensure that the UI updates appropriately:

extension MoviesProvider: NSFetchedResultsControllerDelegate {
func controller(_ controller:

NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith snapshot:
NSDiffableDataSourceSnapshotReference) {

↪→

↪→

↪→

Donny Wals 97

Practical Core Data

var newSnapshot = snapshot as NSDiffableDataSourceSnapshot<Int,
NSManagedObjectID>↪→

let idsToReload = newSnapshot.itemIdentifiers.filter({ identifier
in↪→

// check if this identifier is in the old snapshot
// and that it didn't move to a new position
guard let oldIndex = self.snapshot?.indexOfItem(identifier),

let newIndex = newSnapshot.indexOfItem(identifier),
oldIndex == newIndex else {

return false
}

// check if we need to update this object
guard (try?

controller.managedObjectContext.existingObject(with:
identifier))?.isUpdated == true else {

↪→

↪→

return false
}

return true
})

newSnapshot.reloadItems(idsToReload)

self.snapshot = newSnapshot
}

}

The code above grabs the new snapshot and filters all item identifiers that exist in both the
new and the old snapshot where the underlying managed object’s isUpdated property
is true. These ids are then passed to the new snapshot’s reloadItemsmethod and the
new snapshot is assigned to self.snapshot like before. It’s a bunch of code but helps us
properly update our collection view in all cases.

To use the MoviesProvider as the data provider for a collection view you don’t need to

Donny Wals 98

Practical Core Data

write a ton of code. If you’re using a fully programmatic approach in UIKit you can create your
MoviesProvider in your view controller’s init:

let moviesProvider: MoviesProvider

init(storageProvider: StorageProvider) {
self.moviesProvider = MoviesProvider(storageProvider:

storageProvider)↪→

// create and setup other objects as needed
}

I’ve only included the code that creates the MoviesProvider here. You might want to
create and configure other objects like your collection- or table view here. However, I will
leave those details up to you since there are many di�erent approaches you can take to build
and create your UI and I believe you know best how to do this for your own app.

Before we continue, you’ll need two properties in your view controller:

var dataSource: UICollectionViewDiffableDataSource<Int,
NSManagedObjectID>!↪→

var cancellables = Set<AnyCancellable>()

And while you’re at it, make sure to import Combine at the top of your file because
we’ll use Combine to subscribe to the $snapshot publisher that’s defined on the
MoviesProvider.

In viewDidLoad(), add the following code to create a di�able data source, assign it to your
collection view and subscribe to $snapshot:

override func viewDidLoad() {
// other code...

dataSource = makeDataSource()
collectionView.dataSource = dataSource

Donny Wals 99

Practical Core Data

moviesProvider.$snapshot
.sink(receiveValue: { [weak self] snapshot in

if let snapshot = snapshot {
self?.dataSource.apply(snapshot)

}
})
.store(in: &cancellables)

}

This code calls a makeDataSource()method that we’ll implement soon. The code in this
snippet is fairly trivial. It creates a data source, assigns it to a collection view and uses the
$snapshot publisher from themovies provider to obtain and apply snapshots as needed.

Let’s look at the makeDataSource()method:

extension MoviesViewController {
func makeDataSource() -> UICollectionViewDiffableDataSource<Int,

NSManagedObjectID> {↪→

let cellRegistration =
UICollectionView.CellRegistration<UICollectionViewListCell,

NSManagedObjectID> { [weak self] cell, indexPath, movieId in↪→

guard let movie = self?.moviesProvider.object(at: indexPath)
else {↪→

return
}

var config = cell.defaultContentConfiguration()
config.text = movie.title
cell.contentConfiguration = config

}

return UICollectionViewDiffableDataSource<Int,
NSManagedObjectID>(↪→

collectionView: collectionView, cellProvider: { collectionView,
indexPath, movie in↪→

collectionView.dequeueConfiguredReusableCell(using:
cellRegistration,↪→

Donny Wals 100

Practical Core Data

for: indexPath,
item: movie)

})
}

}

Themost interesting bit in this code is the following object:

UICollectionView.CellRegistration<UICollectionViewListCell,
NSManagedObjectID>↪→

This object takes a closure to be initialized. The closure I used obtains a movie object from
the movie provider and uses it to set up the cell configuration that’s applied to the collection
view cell. Cell configuration is a new API in iOS 14 and it greatly simplifies how collection view
cells are created and configured. Since this is a Core Data book and not a UIKit book I won’t
go into too much detail on this API. The code here is the bare minimum to get something that
works on the screen.

In this code I call object(at:) on themovie provider but you haven’t seen that method
yet. Let’s look at it now:

func object(at indexPath: IndexPath) -> Movie {
return fetchedResultsController.object(at: indexPath)

}

Since Imade the fetched results controller a private property onMoviesProvider, we need
a proxy to access its object(at:)method. That’s all this method on MoviesProvider
is.

Because a fetched results controller tracks its fetched objects using index paths, we can easily
use the index path supplied by a collection view to obtain an object from a fetched results
controller. Neat, right?

Note that the cell registration we created earlier takes a closure that receives three arguments.
The last of these arguments is an NSManagedObjectID in this case. We could have used

Donny Wals 101

Practical Core Data

something like the following code to extract a managed object from the view context using
the supplied managed object id (movieId in the code below):

guard let ctx =
self?.moviesProvider.storage.persistentContainer.viewContext,↪→

let movie = ctx.object(with: movieId) as? Movie else {
return

}

Unfortunately, this wouldn’t always work for newly inserted objects. When an object is added
to a managed object context it’s assigned a temporary ID. This ID is later replaced with a
permanent ID that can be used to fetch the object from amanaged object context. Once this
happens, the object is no longer available through its temporary ID.

In this case, when you add new data to a Core Data store using the same context as the context
that is used by the fetched results controller, the managed object id that is included in the
snapshot is a temporary one. By the timewe get to setting up a cell this temporary ID has been
replaced with a permanent one. We can obtain a Movie that is a fault from the managed
object context but this fault can’t be fulfilled because Core Data can’t find the underlying
object using the no longer valid temporary ID.

This won’t be an issue if you use a di�erent context for inserting new objects than the context
that you use to display objects, but it’s good to keep this in mind and use object(at:) just
to be sure.

In the code bundle for Chapter 4 I have included an application that imports data from
themoviedb.org. To make this code work you’ll have to register and obtain an API key that
can be pasted intoMovieDbImporter.swi�. When you build and run the sample app you can
switch to the Import tab to import a new set of data. Notice that immediately a�er importing
new data, the list in theMovies tab updates. We have our fetched results controller to thank
for this functionality.

If you want to test your fetched results controller without using the sample app feel free to
build a UI that resembles the UI you built in Chapter 1 - Taking your first steps with Core
Data and use a fetched results controller to retrieve your inserted data. Every time you save
new objects in your data store, the fetched results controller will notice this, and it will create

Donny Wals 102

http://themoviedb.org/

Practical Core Data

a new snapshot. By applying this snapshot to a collection view your collection view will
automatically update and show the latest data set.

When you’re working with a larger data set, make sure that you set your fetch request’s
fetchBatchSize to a number that is slightly larger than the number of items that you’ll
have on the screen at a given time. By doing this you will minimize the number of items that
are fetched from the store while you also have all the perks and benefits from your fetched
results controller.

You’ll learn more about doing this in Chapter 10 - Debugging and profiling your Core Data
implementation, I’ll also showyousomeperformancedownsidesofusingfetchBatchSize
with di�able data sources, and you’ll learn how you can work around these downsides using
a more traditional implementation of a fetched results controller with a collection view.

Now that you’ve seen an example of using a fetched results controller in UIKit, let’s see how
we can use this object in Swi�UI.

Using a fetched results controller in Swi�UI

In Swi�UI you’ll find that a fetched results controller feels a little out of place. That’s mostly
because fetched results controller was designed to be used in a UIKit environment. However,
I will show you a simple example of how you could write an abstraction around a fetched
result controller in a Swi�UI environment. Note that this is not an ideal solution. The way that
I’ve implemented this fetched results controller sacrifices some of the optimizations that a
fetched results controller can perform under the hood, and it’s not entirely compatible with
sections although you could make some changes to make this work. I’ll show how at the end
of this section.

While I wouldn’t recommend this approach for all apps, especially ones with a larger object
graph, I have personally not seen any problems with the approach as shown in this section.

Let’s define a simple Swi�UI view that renders a list of movies right o� the bat. It only takes a
little bit of code:

struct MoviesView: View {
@ObservedObject var viewModel: MoviesViewModel

Donny Wals 103

Practical Core Data

var body: some View {
List(viewModel.movies) { (movie: Movie) in
Text(movie.title ?? "--")

}
}

}

Note that this view uses an @ObservedObject of type MoviesViewModel. This object
will be injected into the view by its parent (for example the App struct). If you’re curious what
this might look like, here’s a quick example:

@main
struct SwiftUIExampleApp: App {

let storageProvider = StorageProvider.standard

var body: some Scene {
WindowGroup {

MoviesView(viewModel: MoviesViewModel(storageProvider:
storageProvider))↪→

.tabItem {
Image(systemName: "film")
Text("Movies")

}
}

}
}

Pretty straightforward, right?

Since the MoviesView observes the movies viewmodel, we’ll do all of our work in the view
model. Let’s look at the full implementation all at once:

class MoviesViewModel: NSObject, ObservableObject {
@Published var movies = [Movie]()

Donny Wals 104

Practical Core Data

private let fetchedResultsController:
NSFetchedResultsController<Movie>↪→

init(storageProvider: StorageProvider) {
let request: NSFetchRequest<Movie> = Movie.fetchRequest()
request.sortDescriptors = [NSSortDescriptor(keyPath:
\Movie.popularity, ascending: false)]↪→

self.fetchedResultsController =
NSFetchedResultsController(fetchRequest: request,

managedObjectContext:
storageProvider.persistentContainer.viewContext,↪→

sectionNameKeyPath: nil, cacheName:
nil)↪→

super.init()

fetchedResultsController.delegate = self
try! fetchedResultsController.performFetch()
movies = fetchedResultsController.fetchedObjects ?? []

}
}

extension MoviesViewModel: NSFetchedResultsControllerDelegate {
func controllerDidChangeContent(_ controller:

NSFetchedResultsController<NSFetchRequestResult>) {↪→

movies = controller.fetchedObjects as? [Movie] ?? []
}

}

Notice how similar this code is to the MoviesProvider from the previous section. The
major di�erences are that I added a movies property and removed the snapshot property.
This movies property is marked as @Published so the Swi�UI view will re-render when
we assign a new value to the movies array. In the viewmodel’s init I assign an initial value
to movies a�er fetching the initial data using my fetched results controller.

Donny Wals 105

Practical Core Data

I implemented thecontrollerDidChangeContentdelegatemethod for this viewmodel.
This allows me to obtain all fetchedmovies and assign them to the movies property which
will trigger a UI update if needed.

Because I access the fetched results controller’s fetchedObjects property, the fetched
results controller will load all of its objects intomemory at once. This means that it’s pointless
to use a batch size because the fetched results controller cannot load new items lazily; they
are all requested in one go.

The example that I’ve shown you doesn’t work if you want to use sections. You could do this
by changing the movies array to a dictionary that looks like this:

@Published var movies = [String: [Movie]]()

Instead of assigning fetchedObject to this dictionary you would use the fetched result
controller’s sections property as follows:

movies = fetchedResultsController.sections?.reduce(into: [String:
[Movie]]()) { dictionary, section in↪→

dictionary[section.name] = section.objects as? [Movie] ?? []
}

Each dictionary keywould represent a section title and each valuewould represent themovies
that are part of this section.

This way of combining Swi�UI and Core Data, while not optimized for performance, can be
considered a good starting point in my opinion because it decouples Core Data and Swi�UI
entirely. Your Swi�UI view is not aware of Core Data, managed object contexts, or fetched
result controllers. All it knows is that there’s a list of movies that should be displayed.

This doesn’t mean that it’s always the best approach. It’s also not an approach that I see Apple
recommending. My recommendation is that you judge your approach on a case by case basis,
and most importantly make tweaks as needed to optimize this solution for your app even
when this is typically far from trivial.

A better solution that Apple would recommend for sure is to use Swi�UI’s @FetchRequest,
and let Swi�UI handle any performance optimizations. While you lose some of the nice

Donny Wals 106

Practical Core Data

decoupling that I just showed you, this approach does have the least amount of friction and is
built upon a fetched results controller so it has predictable behavior.

Using@FetchRequest to replace fetched results controller
in Swi�UI

While we didn’t need a ton of code to make NSFetchedResultsControllerwork with
Swi�UI, we can save even more code if we use Swi�UI’s @FetchRequest property wrapper.
The @FetchRequest property wrapper in Swi�UI comes in various flavors. For example,
you can configure an entire fetch request in the @FetchRequest initializer:

@FetchRequest(
entity: Movie.entity(),
sortDescriptors: [NSSortDescriptor(keyPath: \Movie.popularity,

ascending: false)]↪→

predicate: NSPredicate(format: "rating > %@", 0.5)
) var movies: FetchedResults<Movie>

If you add this property to a Swi�UI view, it will automatically set up a fetch request that
retrieves all movies with a rating larger than 0.5, and they will be sorted by their popularity in
descending order. While this will work fine, I prefer to create and configure my fetch requests
outside of my view. The reason for this is that I want to hide implementation details from
my view as much as possible. All my view needs to know is that it renders a list of movies. It
doesn’t need to know how this list was created.

Luckily, we can also pass a preconfigured fetch request to @FetchRequest. This allows you
to define a fetch request anywhere you want, for example in your managed object subclass.
You could add the following extension to theMovie class to create a fetch request that fetches
all movies and sorts them by popularity:

extension Movie {
static var moviesByPopularity: NSFetchRequest<Movie> = {

let request: NSFetchRequest<Movie> = Movie.fetchRequest()
request.sortDescriptors = [NSSortDescriptor(keyPath:
\Movie.popularity, ascending: false)]↪→

Donny Wals 107

Practical Core Data

return request
}()

}

To use this fetch request in a Swi�UI view and render a list of movie titles, you’d use the
following code:

struct MoviesView: View {
@FetchRequest(fetchRequest: Movie.moviesByPopularity)
var movies: FetchedResults<Movie>

var body: some View {
List(movies) { movie in
Text(movie.title ?? "--")

}
}

}

If you thought we didn’t use a ton of code in the previous section, let the code in this snippet
sink in for a moment. That’s really not a lot of code. It’s a lot of Swi�UI magic though. For
example, we don’t explicitly set a managed object context for this fetch request anywhere.
Instead, you must inject a managed object context into your view’s environment. If you forget
to do this, your app will crash at runtime.

To add amanaged object to your view’s environment you can use the following code:

MoviesView()
.environment(\.managedObjectContext,

storageProvider.persistentContainer.viewContext)↪→

.tabItem {
Image(systemName: "film")
Text("Movies")

}

Donny Wals 108

Practical Core Data

You will typically do this in your App struct while setting up your view hierarchy. Note that
you don’t have to re-inject the managed object context in child views of MoviesView. Envi-
ronment objects are always passed down to all children of a view automatically.

When you use @FetchRequest, you create a tight coupling between your view and Core
Data. As long as you don’t put toomuch Core Data specific code in your views, this will be fine.
The level of convenience provided by @FetchRequest is definitely worth the tradeo� inmy
opinion, especially if you keep your fetch requests out of your view so you have full control
over how your fetch requests are configured without creating them in your views.

On iOS 14 and below, we can’t divide our data into sections with @FetchRequest. If you
want to display sectioned data in Swi�UI on iOS 14 and earlier, youwill have to create a custom
NSFetchedResultsControllerwrapper like I’ve shown in the previous section.

Forunately, we can implement sectioned fetch requests easily on iOS 15 and above with the
new @SectionedFetchRequest property wrapper.

Using SectionedFetchRequest to fetch sectioned data in
Swi�UI

In iOS 15, Apple introduced the new @SectionedFetchRequest property wrapper. This
property wrapper works very similar to the reqular @FetchRequest property wrapper, but
as you have probably guessed it has support for sectioned data.

This means that you can use the @SectionedFetchRequest property wrapper whenever
you want to display your data in logical groups.

For example, we could display a list of movies grouped by the year that they were released in,
or by their first letter. To do this, you set up a fetch request just like you would for a regular
@FetchRequest:

extension Movie {
static var moviesByReleaseDate: NSFetchRequest<Movie> = {

let request: NSFetchRequest<Movie> = Movie.fetchRequest()
request.sortDescriptors = [NSSortDescriptor(keyPath:
\Movie.releaseDate, ascending: false)]↪→

Donny Wals 109

Practical Core Data

return request
}()

}

Note that you needed a sort descriptor earlier so that @FetchRequestwould know where
each fetched item belonged in our list. In this case, the sort descriptor will not just influence
our list, but it will also influence the sections in the list. Sections are created as items with
unique section identifiers are found in the fetched results. If an item can be placed within
a section, it will be placed in the section at the respective position within the section. This
means that item sorting within the section is preserved, but youmight find that an item that’s
supposed to be at the bottom of a list without sections, appears in the bottom of the first
section of a sectioned list depending on how you’ve set up your sort descriptors.

The simplest way to use a sectioned fetch request is to sort your results on a single key path,
and then use that same key path to build your sections.

Given the moviesByReleaseDate fetch request from the previous code snippet, we could
build our sectioned fetch request like this:

@SectionedFetchRequest(fetchRequest: Movie.moviesByReleaseDate,
sectionIdentifier: \Movie.releaseDate)↪→

var movies: SectionedFetchResults<Date?, Movie>

The @SectionedFetchRequest is used in a very similar way as its non-sectioned sibling.
The main di�erence is that you pass a key path that should be used as a section identifier to
the @SectionedFetchRequest’s initializer. In this case, I want to groupmovies by their
release date.

The movies variable is a SectionedFetchResults object that’s not just generic over
the object that we’re fetching (Movie), but also over the type we’re using for the section.
This type will match the type of the property that you’re using as a section identifier. In
this case, that means we’ll use Date? as our section identifier because that’s the type of
Movie.releaseDate.

You can use virtually any managed object property as a section identifier, as long as this
property conforms to Swi�’s Hashable protocol.

Donny Wals 110

Practical Core Data

To implement a Swi�UI view that uses the sectioned fetch request I just showed you, you
could use the following code:

var body: some View {
List {

ForEach(movies) { section in
Section(header: Text("Released in: \(section.id ?? Date())")) {

ForEach(section) { movie in
Text(movie.title ?? "--")

}
}

}
}

}

The SectionedFetchResults object that’s created by the @SectionedFetchRe-
quest property wrapper can be iterated over, just like you can iterate over an instance of
FetchedResults. The main di�erence is that SectionedFetchResults contains sec-
tions. You can iterate over each section to present the items for each section in a List. We
can use Swi�UI’s ForEach to create Section objects, and a nested ForEach to create
each list itemwithin a section.

This is pretty straightforward, and if your model object contains a property that allows for
meaningful grouping, you’ve already done all the work needed to present a sectioned list in
your app.

Unfortunately, there are times where you’ll want to do some processing on your section
identifier. In this case, I’m using a Date as my section identifier. This Date is the date for a
movie’s release. This will include year, month, and day. Using this date as a section identifier
isn’t very useful; there usually aren’t a lot of movies released on the same day so it’s more
meaningful to use the release year as a section identifier.

Luckily, we can use a computed property as our section identifier:

extension Movie {
static let formatter: DateFormatter = {

Donny Wals 111

Practical Core Data

let formatter = DateFormatter()
formatter.dateFormat = "yyyy"
return formatter

}()

@objc var releaseYear: String {
return Movie.formatter.string(from: self.releaseDate ?? Date())

}
}

This code adds a new releaseYear property to the Movie object. To use this property as
a section identifier it must be exposed to Objective-C through the @objc annotation. This
property formats the releaseDate property into a string that only contains the release
year.

To use this property, the setup for the @SectionedFetchedRequestmust be updated
as follows:

@SectionedFetchRequest(fetchRequest: Movie.moviesByReleaseDate,
sectionIdentifier: \Movie.releaseYear)↪→

var movies: SectionedFetchResults<String, Movie>

And of course the view’s body should be updated too:

var body: some View {
List {

ForEach(movies) { section in
Section(header: Text("Released in: \(section.id)")) {

ForEach(section) { movie in
Text(movie.title ?? "--")

}
}

}
}

}

Donny Wals 112

Practical Core Data

The reason this works is that @SectionedFetchRequest creates its sections by fetching
entries and grouping them. It’ll do this as e�icient as possible, but as you can imagine it
could be pretty expensive to traverse all results to determine in which section each result
belongs. This will happen regardless of the computed property we’re using, so not using
releaseYearwould not boost your performance in any way in this case.

There is one downside to the releaseYear property though.

Let’s say you want to build a sectioned list that groups movies on their release year, and sort
them by their name within each section.

Normally, you would write the following sort descriptors:

extension Movie {
static var moviesByReleaseDate: NSFetchRequest<Movie> = {

let request: NSFetchRequest<Movie> = Movie.fetchRequest()
request.sortDescriptors = [

NSSortDescriptor(keyPath: \Movie.releaseYear, ascending:
false),↪→

NSSortDescriptor(keyPath: \Movie.title, ascending: true)
]

return request
}()

}

The idea would be to sort all of your results by release year, and for any duplicate years, sort
those records by title. You can see how this makes a lot of sense for our sections. If we would
reverse these sort descriptors, the request would sort on title first and only for duplicate titles
would the release year be used for sorting. This does mean that the release year sections are
created out of order, and that they would appear in our list out of order.

Unfortunately, the fetch request you just saw can’t be written like that. We can’t use a com-
puted property to sort a fetch request. This means that to support sectioning by year, we’ll
need to add a releaseYear property to our model and set it based on the releaseDate
when the Movie entity is saved. This might sound wasteful, but it’s really not that bad. It will
allow Core Data to orchestrate the fetch request as good as it can, and it saves us converting
every Date to String.

Donny Wals 113

Practical Core Data

In order to add this releaseYear property a�er you’ve already deployed your app, you
need tomanually write amigration policy. To learnmore about migration policies, take a look
at Chapter 9 - Updating your data model and performing migrations.

Overall, I’m very happy with @SectionedFetchRequest, and I absolutely like it better
than rolling my own NSFetchedResultsController because whenever Apple fixes a
sneaky bug, or makes a major improvement in performance that’s embedded in @Sec-
tionedFetchRequest, my apps will automatically receive these improvements without
me needing to do any extra work.

One important thing to know about @SectionedFetchRequest and @FetchRequest
is that they both su�er from a similar performance problem as aNSFetchedResultsCon-
trollerwith di�able data sources when you set a fetchBatchSize on the request that
you pass to @FetchRequest or @SectionedFetchRequest. You’ll learn more about
this in Chapter 10 - Debugging and profiling your Core Data implementation. In that chapter, I
will show you an improved version of the wrapped fetch results controller that you saw in the
previous section that can help you improve the performance of your fetch request.

You already learned how you can filter results with predicates, and you just learned how you
can use Swi�UI’s@FetchRequest and@SectionedFetchRequest to fetch and display
data from your Core Data store. I also briefly mentioned that you can assign a new fetch re-
quest with an updated predicate to anNSFetchResultsController’sfetchRequest
property when you build a filter screen. Unfortunately, we can’t assign a new fetch request
to the @FetchRequest property wrapper directly. In iOS 15, Apple added the ability to
update a fetch request’s predicate dynamically. On iOS 14 and below you can’t do this directly
which means you’d have to assign a new FetchRequest object to your @FetchRequest
property.

Towrap this chapter up, let’s see how you can build a filter screenwith a dynamic fetch request
in Swi�UI.

Donny Wals 114

Practical Core Data

Building a filter screen with Swi�UI’s
@FetchRequest and dynamic predicates
Asmentioned in the previous section, the ability to dynamically update an@FetchRequest
in Swi�UI is new in iOS 15. In this section, you’ll see how you can adjust a fetch request’s
predicate and sort descriptors in response to user input. To keep things simple I’ll show you
how to do two things:

• Allow the user to type a search query to filter their movies list
• Allow the user to change the sorting of the movies list from ascending release date to
descending release date

As always, I won’t show you how to build your UI in detail; I’m sure you know how to do this
yourself. If you’re not sure how you can best setup a Swi�UI view to follow along with this
section make sure to refer to the book’s code bundle and open the Chapter 4 source code
to see my Swi�UI view. The important part is that you have a button in your UI to toggle the
sorting, and that you have a textfield that the user can type their search query into.

Note that I’m using an @FetchRequest in this section. It’s good to know that all of the
principles about updating an @FetchRequest’s predicate and sort descriptors applies
equally to @SectionedFetchRequest.

I recommend that you add two state variables to your view. One for the sorting, and one for
the search query:

@State var isSortedAscending = false
@State var searchText = ""

Your textfield shouldbebound tosearchText andwhen your user taps the sort order button
you would toggle isForwardSorted to change the sort order.

The reason I’m recommending this setup is that it’ll allow you to easily respond to changes in
either of these values with Swi�UI’s onChangemodifier:

Donny Wals 115

Practical Core Data

NavigationView {
/* view contents */

}
.onChange(of: isSortedAscending) { newValue in

// we'll update the sorting here
}
.onChange(of: searchText) { newValue in
// we'll update the predicate here

}

The snippet above shows that I’ve applied the onChangemodifiers to my Navigation-
View. Of course, you don’t have to use a NavigationView for this to work. You can apply
onChangewherever you need it and where it makes sense for you. The key here is that we
can now easily respond to changes in the sort order or search text.

Let’s implement the sort order change handler first. But before I showyou the implementation,
I’d like to show youmy @FetchRequest so you knowwhat I’m starting out with:

@FetchRequest(fetchRequest: Movie.moviesByReleaseDate)
var movies: FetchedResults<Movie>

This fetch request is the same fetch request you’ve already used previously.

To change the sort order of this fetchrequest, we’ll implement the on change handler for
isSortedAscending as follows:

.onChange(of: isSortedAscending) { ascending in
movies.sortDescriptors = [

SortDescriptor(\Movie.releaseDate, order: ascending ? .forward :
.reverse)↪→

]
}

Because our @FetchRequest now has a sortDescriptors property, updating the sort-
ing of our fetch request is pretty straightforward. We can assign a new array of sort desciptors
to the fetch request and it’ll automatically update the view to use this new sorting.

Donny Wals 116

Practical Core Data

Note that I’m using SortDescriptor instead of NSSortDescriptor here. The Sort-
Descriptor object is new in Swi�UI and it provides a slightly nicer way to specify our
sort descriptors. If you want to use NSSortDescirptor instead of SortDescriptor
for some reason, you can assign an array of NSSortDescriptor instances to your fecth
request’s nsSortDescriptors property instead.

I have not found any functional di�erences between the two sort descriptor objects. When
you have a fetch request that’s configured with an array of NSSortDescriptor, assigning
an array of SortDescriptorwill replace the old sort descriptors without any issues.

Now that we can change the sort order of movies, let’s implement the search functionality
too:

.onChange(of: searchText) { query in
guard !query.isEmpty else {
movies.nsPredicate = nil
return

}

movies.nsPredicate = NSPredicate(format: "%K CONTAINS[cd] %@",
argumentArray: [#keyPath(Movie.title), query])↪→

}

Whenever the user types in the textfield, searchText will change. When this happens I
immediately updatemy fetch request so the UI is always up to date. To perform the search, all
I need to do is assign a new nsPredicate to the fetch request. This works pretty similar to
how changing sort descriptors works which is pretty neat.

This setup is already enough to implement a search feature for your app.

However, if you’re searching through a large data set you might not want to update your fetch
request and perform a new fetch from the underlying store everything a user types a character.
It’s good practice to apply a technique called debouncing so we can wait for the user to stop
typing for a moment before we execute a search.

That way, we’ll limit the number of search operations we need to do to the bare minimum.

To achieve this, we’ll need to do a bit of refactoring and use a little bit of Combine.

Donny Wals 117

Practical Core Data

We can’t debounce an @State property directly. To work around this, I’ve found that it’s
easiest to introduce an ObservableObject that holds two @Published properties. One
to bind the text field to, and one that we’ll use to update our fetch request’s predicate.

Here’s what that object looks like in this case:

class SearchText: ObservableObject {
@Published var text = ""
@Published private(set) var debounced = ""

init() {
$text

.debounce(for: 0.3, scheduler: DispatchQueue.main)

.removeDuplicates()

.assign(to: &$debounced)
}

}

The debounced text is automatically updated when the text published property changes.
We debounce$text and remove duplicate values tomake surewe only performa new search
when needed.

In the Swi�UI view, you’d create an @StateObject var searchText = Search-
Text() and your textfield should be bound to $searchText.text. Once that’s set up,
you can replace the onChange you used earlier with an onReceive to subscribe to to
debounced published property:

.onReceive(searchText.$debounced) { query in
guard !query.isEmpty else {
movies.nsPredicate = nil
return

}

movies.nsPredicate = NSPredicate(format: "%K CONTAINS[cd] %@",
argumentArray: [#keyPath(Movie.title), query])↪→

}

Donny Wals 118

Practical Core Data

Because debounced only changes when the text property hasn’t changed for 0.3 seconds,
and the new value isn’t the same as the old value, we can immediately update our predicate
once we receive a new search query. We know that we won’t make any unneeded trips to the
underlying storage with this debounce logic in place.

In Summary
You’ve once again covered a lot of ground in this chapter. I’ve shown you how you can use
fetch requests, predicates, and sort descriptors to fetch data from your Core Data store. You
learnedwhat happenswhen you execute a fetch request and how you can tune a fetch request
using fetch limits and o�sets. You also saw how you can use an NSFetchedResultsCon-
troller to retrieve data from a store and automatically update your UI when the data in
your store changes.

I’ve shown you several examples that have full implementations in theChapter 4 folder in this
book’s code bundle. You saw an example of a fetched result controller in combination with a
collection view, an example of a fetched result controller and a custom abstraction in Swi�UI,
and lastly, I’ve shown you an example of @FetchRequest in Swi�UI. You also learned about
iOS 15’s@SectionedFetchRequest, and I’ve shownyouhowyoucandynmically update a
fetch requests sort descriptors andpredicate in iOS 15. You also learnedhowyou candebounce
a textfield to prevent updating your fetch request’s predicate too frequently.

In the Using a fetched results controller in a UIKit app section of this chapter, I mentioned that
a fetched result controller’s di�able data source snapshot contains managed object IDs, and
that these IDs would (unfortunately) be temporary IDs if you fetch data in the same context
as the context that inserted this data. In the next chapter, we’re finally going to look at using
multiple managed contexts, and you’ll learn more about managed object IDs. For now, make
sure that youunderstand fetched result controllers and fetch requests. Maybe experimentwith
them a little bit. You should have enough Core Data knowledge by now to start experimenting
a bit with simple applications that create, read, update, and delete data in your store.

Donny Wals 119

Practical Core Data

Chapter 5 - Using Core Data in a
multithreaded environment
Programming in a multithreaded environment is hard enough as it stands. When several
processes in your app are running concurrently it can be easy to lose track ofwhat’s happening
and when. You probably have executed a URL request using URLSession in one of your
apps. You pass a completion handler to your data task, and this completion handler is called
when your network call completes. This is a fairly straightforward example of multithreading,
but it’s not trivial at all. When you havemultiple asynchronous tasks that are running at the
same time, these tasks can complete in any order. They can even complete at the same time.
If you need access to a certain property or resource in your task’s completion handler, you’ll
likely run into concurrency issues at some point.

It’s not uncommon for developers to use Core Data in multithreaded apps where they need
access to Core Data from places that aren’t the main queue. When this happens, there are
important precautions that you must take to ensure that your Core Data code works properly.
For example, you shouldn’t execute fetch requests on your persistent container’s view context
in a completion handler for a network call. You also shouldn’t pass a managed object that
was fetched using the view context to a background queue.

In this chapter, you will learn about the rules of Core Data’s multithreadingmodel. You will
learnhowyou canwrite CoreData code that’s implementedproperly andworks in applications
that make heavy use of multithreading.

You will learn about the following topic in this chapter:

• Understanding Core Data’s multithreading model
• Passing managed objects between contexts
• Using a temporary managed object context
• Responding to changes in another managed object context
• Understanding Core Data’s query generations

By the end of this chapter, you should know everything that you need to e�ectively and safely
use Core Data in an application that makes use of multiple threads.

Donny Wals 120

Practical Core Data

Understanding Core Data’s
multithreadingmodel
Up until this chapter, all examples that I have shown you were examples where the code you
wrote was executed on the main thread. You used the viewContext to fetch and insert
new data. This approach has worked fine and should continue to work fine as long as your
code runs on the main queue. I have briefly mentioned that Core Data’s viewContext is
associated with the main thread, and that it’s essential that you always make sure that you
access and usemanaged objects on the same queue that theywere fetched on. In other words,
managed objects and their contexts are not thread-safe. You should never pass managed
objects from one queue to the other, nor should you create an instance of a managed object
in a context that’s not associated with the queue that you’re running on.

Let’s take a closer look at this.

All code in your app runs on a queue. Your UI code always runs on themain queue. Networking
callbacks run on a background queue. You don’t knowwhich queue, but it’s a background
queue. You can havemany queues active in your application. Your queues are managed by
grand central dispatch. Grand central dispatch makes sure that each queue that it manages
gets some time to do its work.

Managed object contexts are always associatedwith a dispatch queue. When you create a new
managed object context, the context is automatically associated with a queue. I will show you
how you can create a newmanaged object context in a moment. When you access a managed
object context, youmust run any code that uses this managed object context on the correct
queue. Any managed objects that are associated with a managed object context can only be
accessed safely from the queue that owns the context.

While it’s not safe to access any managed object properties on the wrong queue, there is one
exception that you need to engrave in yourmemory. You can safely access amanaged object’s
objectID property across threads to transfer a managed object from one context to the
next. I will show you an example of this in a moment.

You can create a newmanaged object context using your persistent container’s newBack-
groundContext()method:

Donny Wals 121

Practical Core Data

let backgroundContext = persistentContainer.newBackgroundContext()

This code creates a new background context that will run its code on a private queue.

A backgroundmanaged object context exists alongside your viewContext. When you call
save() on a backgroundmanaged object context, it will write its changes to the persistent
store coordinator which will persist changes to its underlying store. The viewContext can
then fetch these changes from the persistent store as you’ll see later in this chapter.

The following image visualizes the relationship between the persistent store coordinator, your
viewContext and a background context:

Figure 21: A schematic representation of multiple contexts and a persistent store coordinator

Note that the persistent store coordinator does not own either of the contexts. Both contexts
have a reference to the persistent store coordinator so they can read and write data using the
persistent store coordinator.

Take a good look at this diagram, you’ll see it again later in the chapter.

A background queue will run code away from themain thread whichmeans that slow fetch
requests or heavy processing of managed objects will not block the main thread. Like I
mentioned earlier, you should always use amanaged object context on the correct queue. You
can do this through amanaged object context’s perform and performAndWaitmethods.

Donny Wals 122

Practical Core Data

Let’s look at an example where I use a background context to create a newmanaged object,
and save it to the persistent store:

let backgroundContext = persistentContainer.newBackgroundContext()

backgroundContext.perform {
let item = ToDoItem(context: backgroundContext)
item.title = "Write Practical Core Data"

do {
try backgroundContext.save()

} catch {
backgroundContext.rollback()

}
}

This code creates a new instance of a managed object subclass called ToDoItem. I have
defined ToDoItem as an entity in themodel editor and it has a single property titlewhich
is a String. It’s a very simple model but it’s enough to demonstrate a simple background
insertion.

In the closure that I pass to perform, I create an instance of ToDoItem, assign its title, and
attempt to save the background context. This looks very similar to what you’ve seen before,
right?

The main di�erence is that the code in the perform closure is run asynchronously on a
background queue. This means two things:

• Any changes made to the background context in the perform closure are not applied
to the viewContext immediately.

• All code in the perform block is run asynchronously whichmeans that it doesn’t block
the main queue.

When you’re working with multiple contexts youmust make sure you interact with managed
objects from the correct queue. By wrapping your Core Data code in a perform closure you
know for a fact that your code is always run on the correct queue. You can also use perform
to run code on the viewContext’s queue. This is useful if you want to interact with the

Donny Wals 123

Practical Core Data

viewContext from a background queue, for example when you’re in a network callback
closure.

There are several ways for you to update yourviewContextwhen a background context has
inserted new data into your persistent store. The easiest way to do this is by setting up your
viewContext to automatically pull in changes from its parent (the persistent container):

persistentContainer.viewContext.automaticallyMergesChangesFromParent
= true↪→

I will cover this property more in-depth in the Responding to changes in another managed
object context section of this chapter.

With perform and performAndWait you can easily write code that always runs on the
correct queue for anymanaged object context.

Consider the following method (Note that I’ve expandedmy ToDoItemwith a new property
dueDate so I can use it in a predicate):

func fetchToDoItems(dueBefore: Date, in context:
NSManagedObjectContext) {↪→

context.perform {
let request: NSFetchRequest<ToDoItem> = ToDoItem.fetchRequest()
request.predicate = NSPredicate(format: "dueDate < %@", dueBefore
as NSDate)↪→

let items = try? context.fetch(request)
}

}

Nomatter which context you want to use for this fetch request, you canmake sure you’re on
the right context using the performmethod. However, the method as I’ve written it isn’t too
useful. We have no way to return the fetched items to the caller. One solution that youmight
be thinking of right now is to use a callback closure:

Donny Wals 124

Practical Core Data

func fetchToDoItems(dueBefore: Date, in context:
NSManagedObjectContext,↪→

_ completion: @escaping ([ToDoItem]) -> Void) {
context.perform {

let request: NSFetchRequest<ToDoItem> = ToDoItem.fetchRequest()
request.predicate = NSPredicate(format: "dueDate < %@", dueBefore
as NSDate)↪→

let items = try? context.fetch(request)

completion(items ?? [])
}

}

This code works fine but it forces you to deal with asynchronous code which youmight not
consider desirable. Most fetch requests can safely be run synchronouslywithout causing signif-
icant performance problems. In fact, all fetch requests I’ve shown you so far ran synchronously
without any issues.

We can rework the fetchToDoItem method a bit and make it run synchronously with
performAndWait:

func fetchToDoItems(dueBefore: Date, in context:
NSManagedObjectContext) -> [ToDoItem] {↪→

var items: [ToDoItem]?

context.performAndWait {
let request: NSFetchRequest<ToDoItem> = ToDoItem.fetchRequest()
request.predicate = NSPredicate(format: "dueDate < %@", dueBefore
as NSDate)↪→

items = try? context.fetch(request)
}

return items ?? []
}

Donny Wals 125

Practical Core Data

The performAndWaitmethod is similar to perform in the sense that they both take a clo-
sure that is run on the queue for the context that you called perform or performAndWait
on.

The di�erence between them is thatperform runs asynchronously, andperformAndWait
runs synchronously. This means that the queue that you call performAndWait fromwill
halt until the work in your closure is completed. Because of this, you can refactor a method
that does its work asynchronously to run synchronously while still running code on the correct
context’s queue.

Note that performAndWait should be used only if you have no alternative. If you’re not
careful, it’s possible to run into deadlocks by having queues wait for each other. This is true
for any blocking synchronous code and applies equally to performAndWait. That said, the
documentation for performAndWait clearly states that it’s okay to call this method reen-
trantly whichmeans that you can call performAndWait fromwithin a performAndWait
closure without problems.

Aside from a potential deadlock issue, there’s another problemwith my fetchToDoItems
method in both the synchronous and asynchronous versions.

We don’t control where fetchToDoItems is called from. This means that the array of
ToDoItem instances can be handed back to a queue that doesn’t belong to the managed
object context that was passed to fetchToDoItems. For example:

DispatchQueue.global().async {
let viewContext = storageProvider.persistentContainer.viewContext
let items = fetchToDoItems(dueBefore: Date(), in: viewContext)
for item in items {
print(item.dueDate)

}
}

While it’s subtle, this code violates Core Data’s threading rules. We use items that were fetched
using the viewContext on a background queue. If you put this code in your app there’s a
good chance your app doesn’t immediately crash. Everything might look perfectly fine most

Donny Wals 126

Practical Core Data

of the time. Until one day it doesn’t and your app crashes with EXC_BAD_ACCESS errors
because a specific block of codemight suddenly run on a di�erent thread than it did before.

Because of this, it can be really hard to find out where you went wrong. Especially be-
cause Core Data doesn’t do strict thread checking by default. To help you debug and dis-
cover threading violations you can run your app with a special launch argument. Open the
scheme editor for your app target and pass the following launch argument to your app’s
Run scheme -com.apple.CoreData.ConcurrencyDebug 1 as shown in the follow-
ing screenshot:

Figure 22: Screenshot of a scheme that uses -com.apple.CoreData.ConcurrenyDebug 1

When you have this launch argument enabled, Core Data will perform strict checks to make
sure you don’t violate its threading rules. When your app launches you will see the following
message printed in the console:

CoreData: annotation: Core Data multi-threading assertions enabled.

This means that the launch argument is active and your app will crash as soon as you violate
the rules.

Donny Wals 127

Practical Core Data

If you add the launch argument and run the code that I’ve shown you earlier you’ll find that
your app crashes as soon as you attempt to print item.dueDate.

It’s not uncommon to want to run a fetch request on a background thread and then display
the results in the UI. For example, youmight want to perform some potentially heavy post-
processing on a fetch request’s result before displaying the outcome to your user. To do this,
you’ll have to safely pass managed objects from one context to another.

Passingmanaged objects between
contexts
As you’ve seen in the previous section it’s fairly straightforward to use Core Data with a
background context as long as you play by the rules. The benefit of using a background
context is that you can perform heavy computations on a background queue without blocking
the main thread. However, you’ll probably want to show the results of your background work
to your users eventually.

It’s not safe to access a managed object’s properties outside of its managed object context.
However, there is exactly one property that is exempt from this rule; objectID.

Every managed object has a unique objectID property that is used to uniquely reference
a managed object in the entire stack. A managed object’s objectID is persisted in the
underlying store and can be used to fetch managed objects directly. This means that it’s
safe to fetch managed objects in one context and then use their IDs to fetch them in another
context.

Let’s look at an example:

DispatchQueue.global().async {
let viewContext = storageProvider.persistentContainer.viewContext
let bgContext =

storageProvider.persistentContainer.newBackgroundContext()↪→

let fetchedItems = fetchToDoItems(dueBefore: Date(), in:
viewContext)↪→

Donny Wals 128

Practical Core Data

for fetchedItem in fetchedItems {
bgContext.perform {

let item = bgContext.object(with: fetchedItem.objectID) as?
ToDoItem↪→

print(item?.dueDate)
}

}
}

In this code, I fetch a list of items using the viewContext. I loop over the fetched items
and then use each item’s objectID to pull each item into a background context by calling
object(with:) onmy background context.

The object(with:) method always returns a managed object. If the managed object
already exists within the managed object context that you called object(with:) on no
extra work is done. You’ll receive the instance that already exists within the context. If the
managed object doesn’t exist within the context yet, you’ll be given a fault for the object.
Core Data assumes that when the fault fires the referenced managed object exists in the
persistent store. If the managed object does not exist in the persistent store, your application
will crash.

You should only use object(with:) when you’re sure that the object you’re referencing
exists. This means that you’ll need to be certain that nomanaged object context deletes the
underlying record before you can fetch it.

If you’re not sure that the object you’re looking for still exists in the persistent store, or if
you want to play it safe, then you’ll want to use existingObject(with:) instead. This
method does not return a fault. Instead, it returns a fully materialized managed object. This
method is marked as throwing, so if the underlying object does not exist in the persistent
store this method will throw an error that you can handle as you see fit. In general ex-
istingObject(with:) should be preferred over object(with:) due to its built-in
safety.

If you’re fetching managed objects on a background queue you’ll want to be careful with how
you transfer these objects to the view context. Every time you pull a managed object into a

Donny Wals 129

Practical Core Data

managed object context using its objectID this can result in a roundtrip to the underlying
persistent store. These roundtrips aren’t cheap so you’ll want to make sure that you don’t call
existingObject(with:) if it’s not really needed.

One way to avoid calling existingObject(with:) when it’s not needed is to pass a list
of NSManagedObjectID objects from one context to the other, and callingexistingOb-
ject(with:) when the time comes to actually use themanaged object. Of course, you’ll
want to write a small abstraction over this so you don’t call existingObject(with:)
when you can also use a managed object directly.

For example, youmight write a simple abstraction that looks like this:

class ToDoItemDataSource {
private var fetchedIDs: [NSManagedObjectID] = []
private var objects: [NSManagedObjectID: ToDoItem] = [:]
private let persistentContainer: NSPersistentContainer

var numberOfItems: Int { fetchedIDs.count }

init(persistentContainer: NSPersistentContainer) {
self.persistentContainer = persistentContainer

}

func fetch(_ completion: @escaping () -> Void) {
let context = persistentContainer.newBackgroundContext()
context.perform { [weak self] in

let request: NSFetchRequest<ToDoItem> = ToDoItem.fetchRequest()
let items = try? context.fetch(request)
self?.fetchedIDs = items?.map(\.objectID) ?? []

completion()
}

}

func object(at index: Int) -> ToDoItem? {
let id = fetchedIDs[index]

Donny Wals 130

Practical Core Data

if let object = objects[id] {
return object

}

let viewContext = persistentContainer.viewContext
if let object = try? viewContext.existingObject(with: id) as?

ToDoItem {↪→

objects[id] = object
return object

}

return nil
}

}

You can use an abstraction like this to perform a fetch on a background queue, be notified
when the fetch is complete, and then useobject(at:) to fetch specific itemswhen needed.
An approach like this could be useful in a Swi�UI List or UIKit UICollectionView to
avoid fetching all managed objects that were retrieved asynchronously. This makes sure that
you don’t hold a ton of items in memory that a user might never see. Instead, you fetch items
as needed and you cache them tomake sure you don’t have to go through themanaged object
context a second time.

Warning:
It’s important that youunderstand this simple abstraction is incomplete and can’t be used
as-is. For example, it doesn’t handle edits at all since the number of fetched items doesn’t
change when an item is updated. In practice, you’ll find that the hypothetical scenario
like we’re sketching here isn’t very useful. You’ll want to fetch objects and present them
using the view context in almost all cases.

Note that this code depends entirely on correct usage. If you call object(at:) from a
background thread then you would be handed back a managed object that’s associated
with the viewContext, and your app may crash when you access the managed object’s
properties. When you have concurrency debugging enabled as I’ve shown you earlier, your
app will always crash reliably when you access a managed object’s property on the wrong

Donny Wals 131

Practical Core Data

thread.

An abstraction like this is only useful if you execute your fetch request in a di�erent context
than the one that you want to use your results in. In other words, when you execute your
fetch request using theviewContext and youwant to display the fetched objects in aList
or UICollectionView, you can use the fetched objects directly since they were fetched
in the context where you want to use them. Using this abstraction would add a significant
overhead in that case, which isn’t desirable.

In my experience, fetching objects using the context that will use them ismuchmore common
than spreading your fetch over two contexts and the only reason I’m showing it here is to
provide you with an example of how you can pass managed objects between contexts should
the need ever arise.

Passingmanaged objects between queues using their objectID is very useful when needed
but it’s not something you’ll regularly do. There is a performance hit in pulling a managed
object into a context because there’s a good chance the object needs to be fetched from
the persistent store because it doesn’t exist in your managed object context’s row cache.
Unless you need to do significant post-processing I would not recommend fetching objects
in a di�erent context than the context where you need them to avoid fetching objects in a
second context one by one.

In the snippet I just showed you, I obtained a new background context using the persistent
container’s newBackgroundContext()method. This is very useful when you want to
obtain a reference to a background context so you can keep it around.

If you need a disposable or temporary context, you can let the persistent container itself
decide on which background context your code should be run by calling performBack-
groundTask(_:) on the persistent container.

In apps that I have worked on, this was mostly useful when importing data from a remote
source, or when I wouldn’t access managed objects a�er fetching them. The abstraction that I
just showed you is a good candidate for letting the persistent container create andmanage
the queue that we fetch objects on because we only fetch the objects once and then we use
their objectIDs to fetch managed objects in the viewContext.

Let’s refactor the ToDoItemDataSource to use performBackgroundTask(_:).

We’ll also update the fetch request to be slightly more e�icient. Rather than fetching man-
aged objects and extracting eachmanaged object’s objectID, we’ll set our fetch request’s

Donny Wals 132

Practical Core Data

resultType to managedObjectIDResultType to make sure we only fetchmanaged
object IDs. Here’s what the updated implementation for fetch(_:) looks like:

func fetch(_ completion: @escaping () -> Void) {
persistentContainer.performBackgroundTask { [weak self] context in

let request: NSFetchRequest<NSManagedObjectID> =
NSFetchRequest(entityName: "ToDoItem")↪→

request.resultType = .managedObjectIDResultType

self?.fetchedIDs = (try? context.fetch(request)) ?? []

completion()
}

}

The performBackgroundTask(_:) method on NSPersistentContainer takes a
closure that contains all work that we want to perform on a background thread. This clo-
sure is very similar to the perform(_:) method on NSManagedObjectContext. The
closure that you pass to performBackgroundTask(_:) is called with one argument; an
NSManagedObjectContext. The context that you receive in your closure is the context
that you should use for your background work. There is no need to call perform(_:) on
this context because we can assume that performBackgroundTask(_:) invokes the
closure on the correct queue; that’s the whole point of this method.

Since we only want to fetch managed object IDs, we can’t use the fetchRequest()
method that Xcode added to our managed object. Instead, we must use the NS-
FetchRequest(entity:) initializer to create a fetch request that is generic over
NSManagedObjectID since that’s the type of object that we want to fetch.

We can then directly assign the outcome of context.fetch(_:) toself.fetchedIDs
because our fetch request returns managed object IDs rather than managed objects. This
is convenient because we don’t want to use themanaged objects that were fetched on the
background thread in this case.

Setting a fetch request’s resultType can be a very useful performance optimization. In
this case, we use it to only fetch managed object IDs. You can also set resultType to
dictionaryResultType to fetch results as dictionaries instead of managed objects. You

Donny Wals 133

Practical Core Data

would need to change the generic specialization of your fetch request to NSDictionary
instead of your manager object subclass, similar yo how we used NSManagedObjectID in
the code you just saw.

This option would be extremely useful if you only need quick reading from Core Data. Note
that doing this would mean that you can’t modify or track these records like you can when
you fetch managed objects; it’s purely to speed up retrieving read-only data in performance
sensitive situations.

Note that fetchingmanaged object IDs like I’ve just shown you does not guarantee any kind of
sorting. If you want to apply a sort order to your fetchedmanaged object IDs, youmust set
the request’s sortDescriptors and include the properties that you want to sort on in the
request’s propertiesToFetch array:

let request: NSFetchRequest<NSManagedObjectID> =
NSFetchRequest(entityName: "ToDoItem")↪→

request.sortDescriptors = [NSSortDescriptor(keyPath:
\ToDoItem.dueDate, ascending: true)]↪→

request.propertiesToFetch = ["dueDate"]
request.resultType = .managedObjectIDResultType

The examples that I’m providing here are very simple and technically don’t warrant the
overhead of fetching eachmanaged object again in the context where it’s needed.

I can’t stress enough that an approach like this is only e�icient if your result set requires
significant post-processing, or if your fetch request is slow, fetches many objects, and can’t be
optimized any further using the techniques that you’ll learn in Chapter 10 - Debugging and
profiling your Core Data implementation.

The performBackgroundTaskmethod runs your code on a background context’s queue
and provides you with a background context. This is incredibly useful when you’re running a
slow task that shouldn’t block the main thread. When you persist this background context, its
changes are immediately saved to the persistent store.

Again, thismechanism shinesmost when you’re performing slow or expensivework that could
block the main queue.

There is another way to create and use a temporary managed object context. This method is
more appropriate for UI operations and it involves having child contexts.

Donny Wals 134

Practical Core Data

Understanding and using child contexts
A child context is a managed object context that is a direct child of another managed object
context. When you save a child context, these changes are not persisted to the persistent
store but rather to its parent context. The following schematic shows the same schematic that
you’ve seen earlier. The only change is that I’ve added a child context to theviewContext:

Figure 23: A schematic that shows the relationship between a parent and child managed
object context

Note that there’s a read arrow that points to the viewContext. A child context will perform
read operations through its parent but might still end up receiving data from the persistent
store depending on whether or not the viewContext can provide data from its row cache.
Themost interesting aspect of a parent/child relationship is that the child context will write to
its parent context when you call save() on the child.

Donny Wals 135

Practical Core Data

This is particularly useful when you pass a managed object from one view to another view
that allows the user to makemodifications to the managed object.

If the managed object is attached to a child managed object context you can safely make
changes to the managed object without dirtying your viewContext. If the user decides to
cancel editing the object, you can discard the child managed object context and the user’s
modifications are discarded along with it. If the user wants to save their modifications you
can call save() on the child context first to persist changes to the viewContext, and then
call save() on the viewContext to persist changes to the persistent store.

The following code shows how you could approach this in a UIKit application:

class EditViewController: UIViewController {
let object: ToDoItem
let context: NSManagedObjectContext?
let parentContext: NSManagedObjectContext

init(sourceObject: ToDoItem) {
guard let parentContext = sourceObject.managedObjectContext else
{↪→

// we shouldn't be passing a managed object without a context
to this init...↪→

fatalError("Attempting to edit a managed object that's not
associated with a context")↪→

}

self.parentContext = parentContext

let childContext = NSManagedObjectContext(concurrencyType:
.mainQueueConcurrencyType)↪→

childContext.parent = parentContext

guard let childObject = try? childContext.existingObject(with:
sourceItem.objectID) as? ToDoItem else {↪→

// We could not find the item in the childContext. We can
recover by using the object's context instead.↪→

// This is not ideal and should never happen but is nicer than
a fatalError.↪→

Donny Wals 136

Practical Core Data

self.context = nil
self.object = sourceObject
return

}

// Child context created, ToDoItem fetched
self.context = childContext
self.object = childObject

}

func persistChanges() {
defer {

// dismiss this vc when we return
presentingViewController?.dismiss(animated: true, completion:

nil)↪→

}

guard childContext?.hasChanges == true else {
return // no changes to persist

}

do {
try context?.save()

} catch {
print("Something went wrong while saving the child context:

\(error)")↪→

return // don't save the parent
}

do {
try parentContext.save()

} catch {
print("Something went wrong while saving the parent context:

\(error)")↪→

}

Donny Wals 137

Practical Core Data

}
}

In this code sample, I have omitted all of the code that’s normally involved with setting up a
view controller. You know how that works. Instead, I only highlighted the code that is relevant
to you when using a child context. I also didn’t abstract any code into a viewmodel or other
helper object that would handle persisting themanaged object. Normally you’ll want to avoid
interacting with managed object contexts as much as possible since your view controller
shouldn’t interact with Core Data directly unless you can’t avoid it at all (which is essentially
never).

Note that even though I save the parent context a�er saving the child in this example, you
don’t have to do this. Just remember that the child context persists changes to its parent
context. So if you want your changes to be persisted to the persistent store, you’ll need to
save the parent a�er successfully saving the child.

Child managed object contexts are the preferred tool to isolate any changes that the user
makes to managed objects in the UI due to their saving behavior. You don’t immediately
update the persistent store, and the view context doesn’t have to do any extra work to merge
in changes from a background context.

Moreover, when you discard your child context without saving it first, all changes that you’ve
made to managed objects that are owned by the child context are discarded too.

Now that you’ve seen an example of a simple view controller that uses a childmanaged object
context directly, I want to show you howwe can port this code to a Swi�UI view in two steps:

1. Move the Core Data interactions into a viewmodel
2. Use the viewmodel in a Swi�UI view

I’ll show you the viewmodel first:

class ToDoItemViewModel: ObservableObject {
let parentContext: NSManagedObjectContext
let childContext: NSManagedObjectContext?
var item: ToDoItem

Donny Wals 138

Practical Core Data

init(sourceItem: ToDoItem) {
guard let parentContext = sourceItem.managedObjectContext else {

// we shouldn't be passing a managed object without a context
to this init...↪→

fatalError("Attempting to edit a managed object that's not
associated with a context")↪→

}

self.parentContext = parentContext
let childContext = NSManagedObjectContext(concurrencyType:

.mainQueueConcurrencyType)↪→

childContext.parent = parentContext

guard let childObject = try? childContext.existingObject(with:
sourceItem.objectID) as? ToDoItem else {↪→

// We could not find the item in the childContext. We can
recover by using the object's context instead.↪→

// This is not ideal and should never happen but is nicer than
a fatalError.↪→

self.childContext = nil
self.item = sourceItem
return

}

self.childContext = childContext
self.item = childObject

}

func persist() {
guard childContext?.hasChanges == true else {

return // no changes to persist
}

do {
try childContext?.save()

Donny Wals 139

Practical Core Data

} catch {
print("Something went wrong while saving the child context:

\(error)")↪→

return // don't save the parent
}

do {
try parentContext.save()

} catch {
print("Something went wrong while saving the parent context:

\(error)")↪→

}
}

}

The logic in this viewmodel should look familiar. It’s essentially the same as what you just
examined for the view controller.

An interesting aspect of this viewmodel is that I made it conform to ObservableObject,
and I made item an @Published var. This makes it so that my viewmodel can serve as an
@ObservedObject for the Swi�UI view that you’ll see next.

struct EditView: View {
@ObservedObject var viewModel: ToDoItemViewModel

var body: some View {
Form {

Section {
Text("ToDo item title")
TextField("Item title", text:

$viewModel.item.title.withDefault(""))↪→

}

Section {
DatePicker("Due date", selection:

$viewModel.item.dueDate.withDefault(Date()),
displayedComponents: .date)

↪→

↪→

Donny Wals 140

Practical Core Data

}

Section {
Button("Persist") {

viewModel.persist()
}

}
}

}
}

We only need very little code to build a fully featured edit view in Swi�UI with Core Data. The
view model you saw earlier, and this Swi�UI view contain everything you need. Ok, that’s
not entirely true. I’, using a little convenience extension on Binding that allows me to write
$viewModel.item.title.withDefault("").

I’ll explain that extension in a moment. First, I want you to understand why this code works.

If you’re familiar with Swi�UI, you’ll know that TextField, DatePicker, and other views
take bindings to values. These values can be defined inside of your Swi�UI view, or they can
be amember of an ObservableObject. In this case, I made ToDoItemViewModel an
ObservableObjectwhich means that we can create bindings to its members.

We can’t just bind to anything. In this case, we want to bind to the attributes we defined on
the ToDoItemmanaged object. And the nice thing is that we don’t have to do anything at all
to be able to do this.

Every property of a managed object that you label as @NSManaged can automatically be
observed by Swi�UI. This indirectly means that an NSManagedObject subclass is also an
ObservableObjectwhich is extremely useful whenever you present a managed object
inside of a Swi�UI view.

Back to the EditView you just saw.

We can bind our view directly to properties of ToDoItem because ToDoItem acts like an
ObservableObject, and we can bind to its @NSManaged properties like title and
dueDate. It’s save to do this because we know that the view model created a copy of our
original ToDoItem using a child context. This means that any changes that are made to our

Donny Wals 141

Practical Core Data

ToDoItem will be discarded as soon as EditView is dismissed, unless the user taps the
persist button first.

There’s one caveat though, and it’swhy I use a customwithDefault extensiononBinding
(I’ll show you what it looks like real soon).

By default our managed object subclasses are generated with optional properties. For exam-
ple, ToDoItem’s generated class looks like this:

extension ToDoItem {
@nonobjc public class func fetchRequest() ->
NSFetchRequest<ToDoItem> {↪→

return NSFetchRequest<ToDoItem>(entityName: "ToDoItem")
}

@NSManaged public var dueDate: Date?
@NSManaged public var title: String?

}

A Swi�UI TextField and DatePicker both require a binding to a non-optional value.

We couldwork around this by definingToDoItemby hand andmakingdueDate andtitle
non-optional, but it might be nicer to add the following extension to your project to convert a
binding to an optional value, to a binding for a non-optional value:

extension Binding {
func withDefault<Default>(_ defaultValue: Default) ->

Binding<Default> where Value == Default? {↪→

.init(
get: {

wrappedValue ?? defaultValue
},
set: { newValue in
wrappedValue = newValue

}

Donny Wals 142

Practical Core Data

)
}

This binding will either return the value that it wraps, or your default value. Whenever the
binding receives a new value, this value is assigned to the value that it wraps.

With this ni�y little extension, we can bind to optional Core Data properties like this which I
really like:

TextField("Item title", text: $viewModel.item.title.withDefault(""))

Once you have this EditView set up, it’s almost trivial to leverage child context to reuse the
EditView for creating new ToDoItem objects.

The view itself will already support this as-is. All it knows is that it has a viewmodel that holds
a ToDoItem that can bemanipulated, and that the viewmodel can persist changes.

Just for completeness, here’s what the viewmodel’s initwould look like if we wanted to
support creating new ToDoItem objects by reusing the viewmodel and EditView:

init(sourceItem: ToDoItem?, parentContext: NSManagedObjectContext? =
nil) {↪→

guard let parentContext = sourceItem?.managedObjectContext ??
parentContext else {↪→

fatalError("Attempting to edit/create a managed object that's not
associated with a context nor passing a parent context
explicitly")

↪→

↪→

}

self.parentContext = parentContext
let childContext = NSManagedObjectContext(concurrencyType:

.mainQueueConcurrencyType)↪→

childContext.parent = parentContext
self.childContext = childContext

if let sourceItem = sourceItem,

Donny Wals 143

Practical Core Data

let childObject = try? childContext.existingObject(with:
sourceItem.objectID) as? ToDoItem {↪→

self.item = childObject
} else {

self.item = ToDoItem(context: childContext)
}

}

The initializer now optionally takes a parentContext argument. When we want to create
a new item, we would pass nil for the sourceItem and instead pass a managed object
context as the parentContext so we can persist the new item to that parent context if
needed.

Next, I check if we’ve received a source item, and if we can find it in the child context. If we
can, the fetched item is set as item. If we couldn’t, we create a new instance of ToDoItem,
associate it with the child context, and we assign it to self.item.

This is all we need to support both create and update operations in Swi�UI by reusing our
edit view, and the viewmodel we created earlier.

Note that this approach can be reused for UIKit too. The only di�erence is that for UIKit you’d
need a ViewController that supports the edit and create operations in a similar way the Swi�UI
view you saw earlier does.

Responding to changes in another
managed object context
Working with multiple managed object contexts will o�en involve responding to changes that
were made in one context to update another context. When a context had changed, there are
several things you could do. You could pull changes that were made in changed context into
another context, or you can reload your UI. Maybe you want to do this when a specific context
is updated, or maybe you want to run some code when any context updates.

Donny Wals 144

Practical Core Data

Regardless of your specific needs, Core Data has a mechanism that allows you to be noti-
fied when a managed object updates. This mechanism plays a key role in objects like NS-
FetchedResultsControllerwhich tracks a specific managed object context to figure
out whether objects were inserted, deleted, or updated. In addition to this, a fetch results
controller also trackswhether the position of amanagedobjectwithin a result set has changed
which is not something that you can trivially track yourself; this is implemented within the
fetched results controller.

You canmonitor and respond to changes in your managed object contexts through Notifi-
cationCenter. When your managed object context updates or saves, Core Data will post a
notification to the default NotificationCenter instance.

Forexample, youcan listen foranNSManagedObjectContext.didSaveObjectsNotification
to be notified when amanaged object context was saved:

class ExampleViewModel {
init() {
let didSaveNotification =

NSManagedObjectContext.didSaveObjectsNotification↪→

NotificationCenter.default.addObserver(self, selector:
#selector(didSave(_:)),↪→

name:
didSaveNotification, object: nil)↪→

}

@objc func didSave(_ notification: Notification) {
// handle the save notification

}
}

The example code above shows how you can be notified when any managed object context is
saved. The notification you receive contains a userInfo dictionary that will tell you which
objects were inserted, deleted and/or updated. For example, the following code extracts the
inserted objects from the userInfo dictionary:

Donny Wals 145

Practical Core Data

@objc func didSave(_ notification: Notification) {
// handle the save notification
let insertedObjectsKey =

NSManagedObjectContext.NotificationKey.insertedObjects.rawValue↪→

print(notification.userInfo?[insertedObjectsKey])
}

Note that NSManagedObjectContext has a nested type called NotificationKey.
This type is an enum that has cases for every relevant key that youmight want to use. Since
the enum case name for the notification keys don’t match with the string that you need to
access the relevant key in the dictionary, it’s important that you use the enum’s rawValue
rather than the enum case directly.

Tip: NSManagedObjectContext.NotificationKey is only available
on iOS 14.0 and up. For iOS 13.0 and below you can use the Notifica-
tion.Name.NSManagedObjectContextDidSave to listen for save events.
For a more complete list for iOS 13.0 notifications I’d like to point you to the “See Also”
section on the documentation page for NSManagedObjectContextDidSavewhich
is located here.

I’m not a big fan of how verbose this is so I like to use an extension on Dictionary to help
me out:

extension Dictionary where Key == AnyHashable {
func value<T>(for key: NSManagedObjectContext.NotificationKey) ->

T? {↪→

return self[key.rawValue] as? T
}

}

This extension is very simple but it allows me to rewrite the code that you saw earlier as
follows:

Donny Wals 146

https://developer.apple.com/documentation/foundation/nsnotification/name/1506884-nsmanagedobjectcontextobjectsdid

Practical Core Data

@objc func didSave(_ notification: Notification) {
// handle the save notification
let inserted: Set<NSManagedObject>? =

notification.userInfo?.value(for: .insertedObjects)↪→

print(inserted)
}

We could take this even further with an extension onNotfication specifically for Core Data
related notifications:

extension Notification {
var insertedObjects: Set<NSManagedObject>? {

return userInfo?.value(for: .insertedObjects)
}

}

This notification would be used as follows:

@objc func didSave(_ notification: Notification) {
// handle the save notification
let inserted = notification.insertedObjects
print(inserted)

}

I like howclean the call site is here. Thedownsideofmyextension is thatwe can’t constrain it to
Core Data related notifications only, and we’ll need to manually add computed properties for
every notification key. For example, to extract all updated objects through a Notification
extension you’d have to add the following property to the extension I showed you earlier:

var updatedObjects: Set<NSManagedObject>? {
return userInfo?.value(for: .updatedObjects)

}

Donny Wals 147

Practical Core Data

It’s not a big deal to add these computed properties manually, and it can clean up your code
quite a bit so it’s worth the e�ort in my opinion. Whether you want to use an extension like
this is really a matter of preference so I’ll leave it up to you to decide whether you think this is
a good idea or not.

Let’s get back on topic; this isn’t a section about building convenient extensions a�er all. It’s
about observing managed object context changes.

The code I showed you earlier subscribed to NSManagedObjectContext’s .did-
SaveObjectsNotification in a way that would notify you every time any managed
object context would save. You can limit the notifications you receive to a specific managed
object context using the following code:

let didSaveNotification =
NSManagedObjectContext.didSaveObjectsNotification↪→

let targetContext = persistentContainer.viewContext
NotificationCenter.default.addObserver(self,

selector:
#selector(didSave(_:)),↪→

name: didSaveNotification,
object: targetContext)

When you pass a reference to a managed object context to addObserver, you can make
sure that you’re only notified when a specific managed object context was saved.

Imagine that you have twomanaged object contexts. A viewContext and a background
context. You want to update your UI whenever your background context saves, triggering a
change in your viewContext. You could subscribe to all managed object context did save
notifications and simply update your UI when any context got saved.

This would work fine if you have set automaticallyMergesChangesFromParent on
your viewContext to true. However, the default for this property is false so you’ll
find that your viewContextwill typically not update when you save a background context
unless you tell yourviewContext to pull in the changes thatweremadeby your background
context.

You canmake sure that a managed object context merges changes from another managed
object context by subscribing to the didSaveObjectsNotification and merging in

Donny Wals 148

Practical Core Data

any changes that are contained in the received notification as follows:

@objc func didSave(_ notification: Notification) {
persistentContainer.viewContext.mergeChanges(fromContextDidSave:

notification)↪→

}

CallingmergeChangesonamanagedobject contextwill automatically refresh anymanaged
objects that have changed. This ensures that your context always contains all the latest
information. Note that you don’t have to callmergeChanges on aviewContextwhen you
set its automaticallyMergesChangesFromParent property to true. In that case,
Core Data will handle the merge on your behalf.

Note that setting automaticallyMergesChangesFromParent to true is not always
the best approach.

If you’re running a large import on a background task that incrementally saves its context,
you might be refreshing the UI with new objects several times before the import is completed.
In this case, it’s better to explicitly refresh your viewContextwhen the import is complete
by calling reset() on the viewContext and then fetching your data again.

When amanaged object context is reset, all objects that it holds in memory are “forgotten”
andmust be fetched from the persistent store which contains all of the most recent data. This
means that when you execute the fetch request that retrieves data for your view again, it will
receive the updatedmanaged objects.

In addition toknowingwhenamanagedobject contextwas saved, youmight alsobe interested
in when its objects changed. For example, because themanaged object context merged in
changes thatweremade in another context. If this iswhat you’re looking for, you can subscribe
to the didChangeObjectsNotification.

This notification has all the same characteristics as didSaveObjectsNotification
except it’s fired when a context’s objects change rather than when the context is saved.

The notifications that I’ve shown you so far always contain managed objects in their user-
Info dictionary, this provides you full access to the changed objects as long as you access
these objects from the correct managed object context.

Donny Wals 149

Practical Core Data

This means that if you receive a didSaveObjectsNotification because a context got
saved, you can only access the includedmanaged objects in the context that generated the
notification. You couldmanage this by extracting the appropriate context from the notification
as follows:

@objc func didSave(_ notification: Notification) {
guard let context = notification.object as? NSManagedObjectContext,

let insertedObjects = notification.insertedObjects as?
Set<ToDoItem> else {↪→

return
}

context.perform {
for object in insertedObjects {

print(object.dueDate)
}

}
}

While this works, it’s not always appropriate.

For example, it could make perfect sense for you to want to access the inserted objects on a
di�erent managed object context for a variety of reasons. When this is the case, you could of
course extract the managed object IDs and pass them to a di�erent context as follows:

@objc func didSave(_ notification: Notification) {
guard let insertedObjects = notification.insertedObjects else {

return
}

let objectIDs = insertedObjects.map(\.objectID)

for id in objectIDs {
if let object = try?

persistentContainer.viewContext.existingObject(with: id) {↪→

// use object in viewContext, for example to update your UI

Donny Wals 150

Practical Core Data

}
}

}

This code works, but we can do better. In iOS 14 it’s possible to subscribe to Core Data’s
notifications and only receive object IDs. For example, you could use the didSaveObjec-
tIDsNotification notification to obtain all new object IDs that were saved.

TheNotification extension property to get convenient access to theinsertedObjec-
tIDs notification key would look as follows:

extension Notification {
// other properties

var insertedObjectIDs: Set<NSManagedObjectID>? {
return userInfo?.value(for: .insertedObjectIDs)

}
}

You would then use the following code to extract managed object IDs from the notification
and use them in your viewContext:

@objc func didSave(_ notification: Notification) {
guard let objectIDs = notification.insertedObjectIDs else {
return

}

for id in objectIDs {
if let object = try?

persistentContainer.viewContext.existingObject(with: id) {↪→

// use object in viewContext, for example to update your UI
}

}
}

Donny Wals 151

Practical Core Data

It doesn’t save you a ton of code but I do like that this notification is more explicit in its intent
than the version that contains full managed objects in its userInfo.

Notifications can be an incredibly useful tool when you’re working with any number of man-
aged object contexts. In most cases, you’ll be interested in the didChangeObjectsNoti-
fication for the viewContext only. The reason for this is that it’s o�enmost useful to
knowwhen your viewContext hasmerged in data thatmay have originated in another con-
text. Note that didChangeObjectsNotification also fires when you save a context.

This means that when you subscribe to didChangeObjectsNotification on the
viewContext and you insert new objects into the viewContext and then call save(),
the didChangeObjectsNotification for your viewContextwill fire.

A very important caveat that’s definitely caught me o�-guard at least a couple of times is that
some operations do not generate notifications. To be specific, batch update, batch insert, and
batch delete requests do not trigger a notificationwhen you execute them. Youwill learn about
a technique to appropriately handle and respond to these kinds of operations in Chapter 6 -
Sharing a Core Data store with app extensions.

When you use NSFetchedResultsController or Swi�UI’s @FetchRequest you may
notneed tomanually listen fornotificationso�en. But it’s good toknowthat thesenotifications
exist, and to understand how you can use them in cases where you’re doing more complex
and customwork.

Understanding Core Data’s query
generations
When you’re working with multiple managed object contexts, instances of a particular entity
in one context may be di�erent from the same record in a di�erent managed object context.
More importantly, onemanaged object context can hold a fault that points to a record that
was deleted by another managed object context. If this happens and your fault fires, Core
Data will not be able to fulfill the fault because the record no longer exists in the underlying
store.

You can mitigate this problem partially by setting automaticallyMergesChanges-

Donny Wals 152

Practical Core Data

FromParent on every managed object context you own to true. This will make sure that
any time you save data in a context that is managed by the persistent container, all other
managed object contexts are notified of any changes and can update references if needed.
However, in the previous section, you learned that this comes at a cost.

Even if automatically merging changes all the time was a good idea, it still doesn’t mitigate
problems that can arise when onemanaged object context has fetched an object as a fault
and another context deletes the same object before the fault is fulfilled.

One way to get around this is to set shouldDeleteInaccessibleFaults on your man-
aged object context to true. This will make sure that your managed object context knows
that an object that no longer exists in the persistent store can’t be accessed. When you access
a deleted object Core Data will fail silently and you will have to handle this yourself. While this
might work okay in some cases, it can be frustrating in others.

Luckily, Apple has provided amechanism that can help you actively prevent problems. This
mechanism is called query generations and it allows you to pin a managed object context
to a specific snapshot of the underlying store. This means that faults will be fulfilled using
a snapshot of your persistent store rather than the actual persistent store. In fact, any fetch
requests that you execute a�er pinning your managed object context to a query generation
will be run against a snapshot of the persistent store rather than the persistent store itself.

In this section, I will demonstrate how query generations work, and how you can use them in
an app.

As I mentioned earlier, a query generation is a snapshot of the persistent store that your
managed object context interacts with. By default, a managed object context always points to
the latest query generation.

A newquery generation is created every time thepersistent store is changed, or updateddue to
managed object context saving its managed objects. So when you consider this as a timeline,
a managed object context will normally always point to the latest query generation.

Donny Wals 153

Practical Core Data

Figure 24: A schematic view of query generations. Each mutation of the store is a query
generation.

In most scenarios, this behavior is exactly what you want. Especially if you’re not using more
than onemanaged object context you won’t gain anything by using query generations.

However, if you want to make a whole bunch of changes to the persistent store where you
insert, delete, and/or update lots of managed objects from a background managed object
context you might want to be conservative about when your viewContext reads from
the persistent store. In other words, you want to be in control of the snapshot that the
viewContext operates on. This means that even though the persistent store has been
updated a bunch of times, the viewContextwill still use its old snapshot to read from.

Figure 25: The viewContext is pinned to the first query generation

Donny Wals 154

Practical Core Data

This isn’t only useful in case a background context deleted an object that is still held as a fault
in the viewContext. Pinning the viewContext to a specific query generation will also
allow you to perform new fetch requests against the snapshot that the context is pinned to.
This allows you to filter, update, or enrich the UI without absorbing new changes just yet.
This can be incredibly useful if you’re running a process that will incrementally update your
persistent store. For example, you might be loading paginated data from a remote source and
adding it to the persistent store. You may not want to show the new data to the user until the
entire import process is completed even if you need to fetch new data during the import.

You can pin amanaged object context by callingsetQueryGenerationFrom(_:) on the
managed object context using the query generation token that you want to pin the managed
object context to. You can get a managed object context’s current query generation through
its queryGenerationToken. For example, to pin a managed object context to the query
generation that it’s currently on before executing a fetch request you can use the following
code:

let currentToken =
persistentContainer.viewContext.queryGenerationToken↪→

try? persistentCon-
tainer.viewContext.setQueryGenerationFrom(currentToken)↪→

// perform fetch request

In this example, the managed object context is pinned to its current query generation right
before executing a fetch request. This means that data is read from the current snapshot of
the persistent store, and any faults are fulfilled using this snapshot as well.

At some point, you’re going to want to pin your viewContext to the latest query generation
again. For example, when you’re fully done with updating the persistent store and you’re
ready to have the viewContext fetch all your new data. Alternatively, youmight want to
pin your viewContext to the latest query generation if your user taps a refresh button in
your app.

One way to do this is by reading the current class var on NSQueryGenerationToken
and passing that token to setQueryGenerationFrom:

Donny Wals 155

Practical Core Data

let currentToken = NSQueryGenerationToken.current
try? persistentCon-

tainer.viewContext.setQueryGenerationFrom(currentToken)↪→

You can always useNSQueryGenerationToken.current to get a reference to the query
generation that the persistent store is currently at.

Changing the query generation for a managed object context does not update its managed
objects. You’ll need to callrefreshAllObjects() yourself tomake sure that all managed
objects within the context are refreshed and updated.

There are other ways to get a managed object context to reference the latest query genera-
tion.

For example, you can call reset() on a managed object context to return it to its base state.
All managed objects that you fetched using this context are “forgotten”, and the managed
object context will automatically be pinned to the current query generation. You will need
to re-execute your fetch requests to retrieve your managed objects from the persistent store
again. Note that the managed object will remain pinned to the latest query generation at
the time of calling reset() until it is pinned to a new generation. This is di�erent from
the default behavior that you get if you do not pin your managed object context to a query
generation in the first place.

Alternatively, a managed object context will automatically pin itself to the latest query gen-
eration when you push changes from themanaged object context to the persistent store by
calling save(). A�er saving a managed object context, it will update itself to use the latest
query generation.

Lastly, a managed object context will update itself to use the latest query generation when it
merges in changes from another managed object context. This means that you should not set
automaticallyMergesChangesFromParent to true on the context that you want
to pin to a specific query generation.

If you decide that you want to use query generations you should make sure that you don’t
merge in changes before you are ready to have your context point to themost recent query
generation.

This means that you should set automaticallyMergesChangesFromParent to

Donny Wals 156

Practical Core Data

false and call resetwhen you want to point your managed object context to the latest
query generation.

Consider the following example:

func performComplexTask(_ completion: () -> Void) {
persistentContainer.performBackgroundTask { ctx in

// perform complex work

do {
try ctx.save()
completion()

} catch {
// uh oh, something went wrong
ctx.rollback()

}
}

}

performComplexTask {
// reset the viewContext so it uses the latest query generation
persistentContainer.viewContext.reset()

}

In this example, we call aperformComplexTask function and pass it a completion closure.
This closure is called a�er the work is completed and the background context is saved. This
means that we know that when the callback is called, it’s time to update the viewContext.
We can call reset() on the viewContext at this point to automatically pin it to the latest
query generation. Note that you’ll need to re-execute your fetch requests to fetch themost
recent data.

Alternatively, you could call setQueryGenerationFrom on your managed object context
with the .current query generation token and then call refreshAllObjects() to
update all of the managed objects in that context. You’ll still want to re-execute your fetch
requests to retrieve the most up-to-date versions of your managed objects.

Query generations are not a simple topic and I’m sure that you can imagine that incorrect

Donny Wals 157

Practical Core Data

usage of this feature can lead tomore problems than it solves. If you’re not confident that you
grasp query generations well enough to incorporate them, or if you don’t have an issue that
might be solved by query generations, I would advise that you rely on the default behavior
that always pins amanaged object context to the latest query generation nomatter what. Like
many optimization tools, prematurely optimizing your app with query generations is likely to
cause more problems than it solves. That said, query generations are a powerful solution to a
complex problem in apps that make heavy use of concurrency.

In Summary
In this chapter, you have learned some of the most important principles that you need to
knowwhen using Core Data. Especially if your appmakes use of multiple threads, which you
already do if youmake a network call in your application.

You learned that managed objects must only be used and accessed on the thread that their
context belongs to. I showed you that you can call perform and performAndWait on a
managed object context with a closure to ensure that the code in the closure is run on the
same queue as the queue that your managed object context belongs to. This means that you
can safely execute fetch requests and access managed objects in the context that you called
perform on.

I’ve shown you how you can pass managed objects between queues using their objectID.
While this is useful, you learned that fetching a managed object by its objectIDwill o�en
result in a roundtrip to the persistent store which is expensive. When you find yourself passing
the entire result from a fetch request between contexts throughmanaged object IDs it’s a sign
that you’re probably better o� executing the fetch request (again) on the context where you
need themanaged object since that will typically only take a single roundtrip to the persistent
store.

Next, you saw how you can use NotificationCenter to receive notifications when a
managed object context is saved, or when it updates its managed objects. I’ve shown you how
you can subscribe to notifications for either all contexts or a specific context. You learned that
you can either subscribe to a type of notification that has all updated, inserted, and deleted
managed objects in its userInfo, or to a type of notification that only has object IDs in its
userInfo.

Donny Wals 158

Practical Core Data

Lastly, I showed you how you can use query generations to pin a managed object context to a
certain version of the persistent store. This allows your managed object context to fulfill faults
for objects that were deleted in the persistent store, and you can use it to tightly control when
amanaged object context will use the latest version of the persistent store. This is incredibly
useful when you know that you’re going to make lots of changes to the persistent store and
you don’t want your viewContext to have access to all these changes until you’re done
modifying the persistent store.

Donny Wals 159

Practical Core Data

Chapter 6 - Sharing a Core Data store with
apps and extensions
Manyapplicationsmakeuseof iOS’ extension system tobuildwidgets, interactive notifications,
share functionality, iMessage apps andmore. If your app uses Core Data, it’s o�en desirable
that these extensions have access to your Core Data store and can make modifications if
needed. However, sharing a database between your application and extensions isn’t always
a trivial task. You may not have architected your data store for sharing from the start, and
ensuring that your extensions and application are always in sync requires a bit of extra work.

In this chapter, you will learn about the following:

• Setting your app up for data sharing between your app, extensions, and even other apps
that you’ve built using App Groups.

• Ensuring that your application and extensions are in sync with persistent history track-
ing.

As a bonus, you will learn how persistent history tracking can help you account for Core Data’s
batching operations that don’t trigger notifications in NotificationCenter.

Setting your app up for data sharing with
App Groups
Sharing data between one or more applications and their extensions on iOS is done through a
feature called App Groups. When you create an App Group, every app that youmark as part of
that App Group gains access to a shared folder where you can store data that you want to be
accessible for eachmember of the App Group.

When you create your Core Data stack, the .sqlite file that holds your persisted data (if
you use the SQLite store) is stored in your app’s Application Support directory. Your app’s
Application Support directory is not shared within an App Group, so you can’t use the default
setup when you intend to share your data betweenmultiple apps and/or extensions.

Donny Wals 160

Practical Core Data

Luckily, you can tell your NSPersistentContainer to use a custom path to store its data.
This means that you can tell the persistent container to store your .sqlite file in your App
Group’s shared folder.

Enabling App Groups for your app or extension

App Groups is a feature that requires a capability to be added to your target (your target is an
app or extension). You can add the required capability to your target using the project settings.
Click on your project in the File Navigator and select the target that you want to enable App
Groups for from the list of targets that exist in your project.

Next, click on Signing & Capabilities and click + Capability. This brings up the capabilities
window. Find and select the App Groups capability. This will add a new section to your
projects Signing & Capabilities tab as shown in the following image:

Figure 26: The App Groups section

In this section, you can create a new App Group for your project, or add your target to an
existing App Group that’s associated with your developer account.

App Groups are added with the + icon andmust have a unique reverse DNS notation identi-
fier.

Once you’ve added your App Group, make sure the checkmark next to the App Group’s name
is active. When the checkmark is active, the target that you’re editing is part of that App Group
and will share some storage on the device with other apps that are part of the same group.

Donny Wals 161

Practical Core Data

Configuring your persistent container for data sharing

By default, a persistent container will use your app’s private storage to save your persistent
store. This means that your persistent store is normally not accessible from any extensions
or other apps that are part of the same App Group. If you’re starting a new project and you
already know that you’re going to add extensions that need access to your persistent store,
it’s a good idea to add the App Groups capability right away and configure your persistent
container to use your App Group’s storage, even if your initial app release doesn’t have to
share is store yet.

Configuring your persistent container to work with App Groups is fairly straightforward. In
earlier chapters I have shown you the following code to create an instance of NSPersis-
tentContainer:

public class StorageProvider {

public static var standard = StorageProvider()
public let persistentContainer: NSPersistentContainer

public init() {
persistentContainer = NSPersistentContainer(name: "Model")

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

if let error = error {
fatalError("Core Data store failed to load with error:

\(error)")↪→

}
})

}
}

The persistent container in this code uses an SQLite based persistent store that’s stored in the
default location.

A persistent container uses persistent store descriptions to configure its persistent stores. A

Donny Wals 162

Practical Core Data

persistent store can havemultiple descriptions. When you create a new NSPersistent-
Container it will always have a default description that we canmodify.

For example, you can change where your persistent store is located by setting the persistent
store description’s url property.

This is done using the following code (I’m only including the bits that are di�erent from the
code I just showed you):

let id = "group.com.donnywals.practicalCoreData"
let container = FileMan-

ager.default.containerURL(forSecurityApplicationGroupIdentifier:
id)!

↪→

↪→

let url = container.appendingPathComponent("Model.sqlite")

persistentContainer = NSPersistentContainer(name: "Model")
persistentContainer.persistentStoreDescriptions.first!.url = url

There are just two parts to this code. First, I create the path to my SQLite file. This involves
looking up where the App Group stores data on the file system and appending the name of
the SQLite store that should be used.

You can pick any name you want, I chose the name Model.sqlite here, but you could also
name your SQLite filestore.sqlite. It doesn’t matter whether your SQLite namematches
the name of your data model file.

Once the path for the SQLite file is determined, I create an NSPersistentContainer
and access its single persistent store description through persistentStoreDescrip-
tions.first!. Note that I’m using an ! to force-unwrap the first persistent store descrip-
tion. This description should always be there. If this description does not exist, wemanaged to
somehow create a persistent container that doesn’t have a default persistent store description
and we’re in big trouble. Crashing the appmakes total sense in this case.

Next, I assign the URL that I just built to the persistent store description’s url property and
that’s all that needs to be done. When you call loadPersistentStores on the persistent
container as shown in the standard initialization that I showed you earlier, the persistent
container will set everything up as normal, with the only di�erence being that our SQLite file

Donny Wals 163

Practical Core Data

is now stored within the App Group’s storage which means every app and extension that’s a
member of the same App Group has access to this SQLite file.

We’ll use a second app to take our shared Core Data storage for a spin soon but first, let’s
see how you canmigrate the SQLite storage for an existing project over to your App Group’s
shared storage since it’s not uncommon for developers to add support for extensions a�er
having worked on their app for a while.

Migrating an existing SQLite store to your App Group

While using App Groups in a new app is fairly simple since all you had to do was tell the
persistent container to write its persistent store to your shared folder, doing the same for an
existing app is slightly more involved.

When you want to migrate the persistent store for an existing app to a new location the
easiest way to achieve this is by instructing the persistent store coordinator to migrate the
database from one location to another. Performing this migration through the persistent store
coordinator is the safest way to do this since it ensures that the entire database is migrated
properly.

While migrations tend to sound big and scary, a migration like this turns out to be fairly
straightforward to manage. To make the migration slightly easier to manage I like to add the
following two properties to my StorageProvider class:

public class StorageProvider {

public static var standard = StorageProvider()
public let persistentContainer: NSPersistentContainer

private var oldStoreURL: URL {
let appSupport = FileManager.default.urls(for:

.applicationSupportDirectory,↪→

in: .userDomain-
Mask).first!↪→

return appSupport.appendingPathComponent("Model.sqlite")
}

Donny Wals 164

Practical Core Data

private var sharedStoreURL: URL {
let id = "group.com.donnywals.practicalCoreData"
let groupContainer = FileMan-

ager.default.containerURL(forSecurityApplicationGroupIdentifier:
id)!

↪→

↪→

return groupContainer.appendingPathComponent("Model.sqlite")
}

// init...
}

Replace the string Model.sqlitewith your model name followed by .sqlite. Typically
you’ll use the same name that you pass to your persistent container.

Next, add the following method to the StorageProvider class:

public class StorageProvider {
// ...

func migrateStore(for container: NSPersistentContainer) {
let coordinator = container.persistentStoreCoordinator

guard let oldStore = coordinator.persistentStore(for:
oldStoreURL) else {↪→

return
}

do {
try coordinator.migratePersistentStore(oldStore, to:

sharedStoreURL,↪→

options: nil,
withType:

NSSQLiteStoreType)↪→

} catch {
fatalError("Something went wrong while migrating the store:

\(error)")↪→

Donny Wals 165

Practical Core Data

}

do {
try FileManager.default.removeItem(at: oldStoreURL)

} catch {
fatalError("Something went wrong while deleting the old store:

\(error)")↪→

}
}

}

We’ll call this method from the init in a moment. Before we do, let’s go over what it does.

Like you learned inChapter 2 -UnderstandingCoreData’s buildingblocks, every persistent
container has a persistent store coordinator that’s responsible for mediating between your
app and the underlying persistent store.

While you typically won’t interact with the persistent store coordinator, it makes sense to do
so now that we want to migrate our persistent store from one location to another.

To do this, you must first obtain a reference to the current persistent store. We can obtain
this reference by asking the persistent store coordinator for the persistent store at a specific
URL. We’ll use the oldStoreURL that you defined earlier for this. If no persistent store is
found at the old location, the migration has either been performed already or the app was
just installed. In either case, we don’t need to perform the migration.

When apersistent store is found at the oldURL, I ask the persistent store coordinator tomigrate
the old store to a new location; my App Group. Note that I explicitly tell the coordinator to
migrate my store as an SQLite store.

If this operation succeeds I can safely delete the old store using the FileManager.

Both migrating the store and removing the old file can throw an error and are symptoms of
di�erent problems. That’s why I put them both in their own do block. In the sample code
I fatal error on both occasions but in reality, you might want to implement di�erent error
handling in each case.

For example, if themigration succeeded and deleting the old store failed, your app is probably
fine. You’ll just have to make sure that you check whether a file exists at the new location

Donny Wals 166

Practical Core Data

before attempting the migration again. You could do this by putting the following code before
let coordinator = container.persistentStoreCoordinator:

// use with caution
guard !FileManager.default.fileExists(atPath: sharedStoreURL.path)

else {↪→

return
}

This code makes sure that the store doesn’t exist at the new location before even attempting
themigration. Note that this might cause problems if your extension runs before your app has
a chance to perform your migration. I’ve personally found that only checking if the old store is
still around and removing it a�er the migration works reliably. You could also back this up
by setting a flag in UserDefaults a�er performing the migration to no longer depend on
checking whether a certain file exists at all.

Similarly, if the migration itself fails youmight not want to crash your app either. Youmight
be fine with your app and its extensions not sharing a database if, for whatever reason, the
migration doesn’t work.

I like to be pretty rigorous in howmy apps act so I consider either operation failing a crashable
o�ense; they should just work. The ultimate decision is up to you of course.

To perform the migration when needed, we need to make some changes to the init code:

public init() {
persistentContainer = NSPersistentContainer(name: "Model")

// use the new store
if !FileManager.default.fileExists(atPath: oldStoreURL.path) {

persistentContainer.persistentStoreDescriptions.first!.url =
sharedStoreURL↪→

}

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

Donny Wals 167

Practical Core Data

if let error = error {
fatalError("Core Data store failed to load with error:

\(error)")↪→

}
})

// perform the migration
migrateStore(for: persistentContainer)

persistentCon-
tainer.viewContext.automaticallyMergesChangesFromParent =
true

↪→

↪→

}

In the initializer for the StorageProvider I check whether a file exists at the old store
location. If no old store file exists anymore, I setmy persistent store description’surlproperty
to use the new persistent store location.

For the persistent store coordinator to be able to perform our migration, the persistent con-
tainer must first load all the persistent stores. Note that we load the stores a�er we have
already configured the persistent store description’s url. This is important because if we
set the url a�er loading the stores it wouldn’t have any e�ect; the default persistent store
location would have already been used to load the store.

Since migrateStore(for:) checks whether the migration is needed we can
safely call this method a�er loading the persistent stores. Since loadPersis-
tentStores(completionHandler:) loads persistent stores synchronously by
default, we don’t need to perform the migration in the completion handler.

If we already migrated the store nothing happens. If we haven’t migrated the store we’ll run
the migration and the persistent store coordinator will handle the switch from the old file
location to the new location for us.

Now that the main app is ready to begin sharing its Core Data store, let’s see how you can
correctly and e�iciently use this shared store. Andmore importantly, let’s see how you can
keep the two stores in sync.

Donny Wals 168

Practical Core Data

E�iciently using a shared Core Data
store
Regardless of whether you’re sharing a data store with an extension or with another app, the
process is the same. In this section, I will use the Chapter 6workspace that’s included in this
book’s code bundle. The workspace contains a UIKit app and a Swi�UI app. These two apps
will share a Core Data store, and they are both able to read and write data from and to the
shared store.

When you look at each app individually, there’s not a lot of interesting extra work to be done.
Both apps will use the same underlying SQLite store because they are members of the same
app group, andmy persistent container is configured with a description that uses a shared
file as its SQLite store.

What’s more interesting to go in-depth on is how we can make sure that any changes made in
one app will automatically be shown in the other.

When you’re dealing with a single application that has multiple managed object contexts, you
can listen to Core Data related notifications that are fired when a managed object context
saves or updates its objects or object IDs.

Unfortunately, there are two scenarios where these notifications can’t be used to keep track
of changes and update your view accordingly:

1. Core Data’s batch delete and batch update APIs don’t trigger any notifications.
2. Changes made to the underlying store by other apps don’t trigger notifications in Notifi-
cationCenter.

Let’s take a closer look at batch requests and how they work before wemove on to persistent
history tracking.

Understanding why batch requests don’t trigger
notifications

If you look at the sample code in the Chapter 6 workspace you’ll find that there’s a Stor-
ageProvider framework. This framework contains a Helpers.swift file which contains

Donny Wals 169

Practical Core Data

a method called generateAndInsertObjects. This method is used by both apps to
generate a bunch of ToDoItem instances and save them to the persistent store using a batch
insert. There’s also a deleteAllObjectsmethod that uses a batch delete operation to
delete all ToDoItem records from the persistent store.

Let’s go over these two helper methods to see what batch insert and delete requests look
like.

Here’s the implementation for generateAndInsertObjects:

func generateAndInsertObjects() {
persistentContainer.performBackgroundTask { context in

var numberOfInsertedItems = 0

let batchInsert = NSBatchInsertRequest(entity: ToDoItem.entity())
{ (dictionary: NSMutableDictionary) in↪→

dictionary["dueDate"] = Date().addingTimeInterval(3600)
dictionary["title"] = "Generated Task \(UUID().uuidString)"

numberOfInsertedItems += 1

return numberOfInsertedItems == 10
}

try! context.execute(batchInsert)
}

}

This method uses a background context to run an NSBatchInsertRequest. Batch re-
quests are useful when you’re manipulating larger numbers of records. For example, during
an extensive data import or when you’re generating a set of test records. In this case, I’m
inserting only ten records, but I’m sure you can imagine what the code would look like for 100
or 1000 records (it’d be the same).

A batch insert request can take several shapes. For example, if you have a predefined array
of dictionaries that describe the records that you’d like to store, you can pass that array
directly to the NSBatchInsertRequest initializer. In this case, I opted to use a version

Donny Wals 170

Practical Core Data

of NSBatchInsertRequest that uses a closure to populate each dictionary individually.
This is useful when you’re loading or generating data for each record and helps you keep a
small memory footprint.

When you create a batch insert like the one from this example, you supply a closure that is
passed anNSMutableDictionary instancewhich is a type that stems fromObjective-C. In
Swi�, this would be a[String: Any] dictionary that’s defined as a variable (usingvar).

In this closure, you should populate the dictionary. The keys in the dictionary should match
the property names of your managed object and the values you assign to these keys should
be compatible with the properties of your managed object subclass.

Core Data will call this closure with a fresh dictionary continuously until you return true
from the closure. At that point, the insert is considered complete and your data is persisted.
In this case, I want to insert ten items so I keep track of my inserted items count and return
numberOfInsertedItems == 10 to determine whether the insert is complete.

As you can imagine, working with a dictionary can be error-prone. You can easily make a typo
in your dictionary keys, or assign the wrong value to one of the keys. It’s possible to use a
flavor of NSBatchInsertRequest that passes an instance of an NSManagedObject to
your closure instead of a dictionary. All you have to do is change the type of argument in the
closure that’s passed to the initializer to NSManagedObject. Inside the closure, you can
then cast the object to the managed object subclass that you’re inserting to easily access its
properties.

Managed objects are slightly heavier toworkwith than dictionaries but the added safety could
certainly be helpful if you’re dealing with more complex objects than I am in this example.

Rather than calling save on the managed object context, I ask it to execute the batch
insert request. This demonstrates a fundamental di�erence between batch requests and a
traditional save. Because you don’t explicitly save the managed object context, it’s safe to
assume that a batch request is handled di�erently under the hood than a regular save. This
manifests itself through the fact that a batch request does not generate aCoreData notification
whereas a regular save does.

One major drawback of NSBatchInsertRequest is that it can only be used for objects
without a relationship. The reason is simple; batch insert requests circumvent most of Core
Data’s validation logic so it can’t manage relationships properly. This means that you can
only use batch inserts for objects that either have no relationships, or for objects that have

Donny Wals 171

Practical Core Data

optional relationships.

When you need to perform a large import that involves relationships you’re better o� inserting
all of your objects and their relationships into a managed object context one by one and
saving the context. This approach is much heavier than batch requests but if you want to
insert relationships it’s your only option.

That covers generateAndInsertObjects(), let’s take a look at the implementation for
deleteAllObjects next:

func deleteAllObjects() {
persistentContainer.performBackgroundTask { context in

let fetchRequest: NSFetchRequest<NSFetchRequestResult> =
ToDoItem.fetchRequest()↪→

let deleteRequest = NSBatchDeleteRequest(fetchRequest:
fetchRequest)↪→

try! context.execute(deleteRequest)
}

}

A batch delete request uses a regular fetch request to determine which objects should be
deleted. In this case, I want to delete all my ToDoItem records so I create a fetch request that
will match all records in my store. It’s possible to assign a predicate to your fetch request.
All records that match the predicate will be deleted.

Onceyouhaveyour fetch request configured, youcanpass it to theNSBatchDeleteRequest
initializer and ask your context to execute the batch delete request you just created.

Similar to a batch insert, this kind of request does not trigger the notifications that saving
your context would.

In the Swi�UI sample project for this chapter, I have created a simple view that shows a list
of to-do items. There are also two buttons. One calls the generateAndInsertObjects
method I just showed you. The other calls deleteAllObjects.

The app works beautifully, and persistent history tracking is to thank for that.

Donny Wals 172

Practical Core Data

Getting started with persistent history tracking

In StorageProvider.swift look for the following two lines of code:

persistentContainer.persistentStoreDescriptions.first!.setOption(true
as NSNumber, forKey: NSPersistentHistoryTrackingKey)↪→

persistentContainer.persistentStoreDescriptions.first!.setOption(true
as NSNumber, forKey:
NSPersistentStoreRemoteChangeNotificationPostOptionKey)

↪→

↪→

Remove or comment these lines out so they’re no longer active. This will disable persistent
history tracking for the app. If you run the app now, the insert and delete buttons are broken.
New items are never added to the UI, and when you tap delete nothing seems to happen.
When you tap insert and restart the app, the inserted items appear. When you tap delete and
then restart the app, all items are gone.

In other words, the buttons work but the UI only reloads on app launch.

The reason for this is that the insert anddeletebuttons in theapp triggerbatch insert anddelete
operations. Because these operations don’t trigger any of themanagedobject context did save
notifications, the fetched result controller that’s used inside the @FetchRequest property
wrapper doesn’t know if and when the underlying store has changed. The viewContext
also never merges in any changes because it’s not aware of any changes.

Byenablingpersistenthistory tracking, thepersistent coordinatorwill useSQLite’swrite-ahead
logging feature to keep track of individual transactions that have updated the underlying
storage. This means that alongside the regular sqlite file, a wal file is used to persist and
track all transactions that have modified your store. This includes changes made by other
apps and extensions, as well as the current app’s changes.

Because the write-ahead log holds changes from any source, it’s extremely useful for apps
that share their persistent store with an extension or other apps.

The two lines that you uncommented earlier enable persistent history tracking and persistent
history-related notifications respectively. You should enable both of these options on your
persistent store description if you want to properly implement persistent history tracking in
your app.

Donny Wals 173

Practical Core Data

To make use of persistent history tracking, we need to perform a little bit more work than
enabling the feature and its notifications.

I find it most convenient to use a special persistent history tracking object that listens for
persistent history-related notifications and takes action accordingly.

For example, you could define the following PersistentHistoryTracker class:

class PersistentHistoryTracker {
private let persistentContainer: NSPersistentContainer

init(persistentContainer: NSPersistentContainer) {
self.persistentContainer = persistentContainer

NotificationCenter.default.addObserver(self, selector:
#selector(processChanges(_:)),↪→

name:
.NSPersistentStoreRemoteChange,↪→

object:
persistentContainer.persistentStoreCoordinator)↪→

}

@objc func processChanges(_ notification: Notification) {
// perform work here

}
}

You can create an instance of this class in the StorageProvider object that you use to
wrap your persistent container. Alternatively, you can define it somewhere else. It’s up to you
to decide what fits your architecture best. I happen to prefer keeping the persistent history
tracking close to my StorageProvider.

Every time your persistent history changes, a notification is sent through Notification-
Center. Note that this notification is not the same as a managed object context did save
notification. You can’t merge this notification into a context directly and call it a day. All this
notification is intended to do is inform you that a new entry in your app’s persistent history is
available.

Donny Wals 174

Practical Core Data

The next step a�er receiving a persistent history notification is to query your persistent his-
tory for relevant changes. This will involve asking the NSPersistentHistoryChang-
eRequest class to construct a request that retrieves all changes that occurred a�er a certain
moment in time. There are several ways for you to express this moment in time:

• Token based
• Timestamp based
• Transaction based

Every method works roughly the same but I have found the token-based approach to be the
most reliable and convenient to work with.

The following code can be used to obtain a history change request:

@objc func processChanges(_ notification: Notification) {
let token = self.lastToken()
let request = NSPersistentHistoryChangeRequest.fetchHistory(after:

token)↪→

}

This code uses a lastToken method that I defined on my PersistentHistory-
Tracker:

func lastToken() -> NSPersistentHistoryToken? {
guard let data = UserDefaults.shared.data(forKey:
"PersistentHistoryTracker.lastToken.app") else {↪→

return nil
}

return try? NSKeyedUnarchiver.unarchivedObject(ofClass:
NSPersistentHistoryToken.self, from: data)↪→

}

This method uses an NSKeyedUnarchiver to convert data that was read from UserDe-
faults into an instance of NSPersistentHistoryToken.

Donny Wals 175

Practical Core Data

Note that I’musingUserDefaults.sharedhere rather thanUserDefaults.standard.
I defined a custom UserDefaults instance that uses the App Group that my app is a part
of. Doing this will allow me to read and write from and to a shared UserDefaults suite
which will be convenient when we bring other apps into the mix. Here’s how I created this
shared UserDefaults object:

extension UserDefaults {
static var shared = UserDefaults(suiteName:

"group.com.donnywals.practicalCoreData")!↪→

}

Because I used the App Group identifier as the suiteName for this custom UserDefaults
object, I end up with a UserDefaults store that will allow data sharing between all apps
within the same group.

Back to persistent history tracking.

You just saw how you can obtain a persistent history request that fetches all transactions that
occurred a�er the last token that we stored. The first time this runs, the token will be nil.
This means that all of the available persistent history entries will be retrieved.

Just like any other Core Data request, a persistent history request must be executed by a man-
aged object context. In this case, I’m going to use the persistent container’s viewContext
to execute the persistent history request. This will make it convenient for me to update the
viewContext later which will trigger a UI update.

When you execute a persistent history request you receive an instance of NSPersisten-
tHistoryResult. This object has aresultproperty that holds all of thepersistent history
transactions thatwe’re interested in. You can use the following code to execute your persistent
history request and extract the persistent history transactions:

@objc func processChanges(_ notification: Notification) {
let token = self.lastToken()
let request = NSPersistentHistoryChangeRequest.fetchHistory(after:

token)↪→

let context = persistentContainer.viewContext

Donny Wals 176

Practical Core Data

context.perform { [unowned self] in
do {

guard let result = try context.execute(request) as?
NSPersistentHistoryResult,↪→

let history = result.result as?
[NSPersistentHistoryTransaction] else {↪→

return
}

// use the history
} catch {

print(error)
}

}
}

Once you have obtained the persistent history transactions that you’re interested in, you can
iterate over them and update your managed object context by extracting a Notification
object from each NSPersistentHistoryTransaction. Since it’d be quite repetitive to
show you the full processChanges(_:) method again I’ll only show you the code that
should go in place of // use the history in the previous code snippet:

for transaction in history {
let notification = transaction.objectIDNotification()
context.mergeChanges(fromContextDidSave: notification)

self.persistLastToken(transaction.token)
}

This code should look very familiar apart from the call to persistLastToken. This is
another function that I’ve defined on the persistent history tracker object. It persists the token
for the latest transaction that got processed to UserDefaults.

Donny Wals 177

Practical Core Data

Here’s what persistLastToken looks like:

func persistLastToken(_ token: NSPersistentHistoryToken) {
guard let data = try? NSKeyedArchiver.archivedData(withRootObject:
token,↪→

requiringSecureCoding: true) else {↪→

return
}

UserDefaults.shared.set(data, forKey:
"PersistentHistoryTracker.lastToken.app")↪→

}

I use Swi�’sNSKeyedArchiver to transform thepersistent history token toData and then I
persist it toUserDefaults. Note thatNSPersistentHistoryToken is not aCodable
object so you can’t transform it into data using a JSONEncoder().

In theory, this is all the code you need to get started with persistent history tracking.

However, there’s an opportunity for improvement here.

When you enable persistent history tracking, all transactions that occur in your database are
persisted to your user’s device. This means that the number of stored transactions can grow
wildly over time. Usually, you’re only interested in persistent history transactions for a very
short amount of time. Therefore, it’s good practice to clean up a�er ourselves every once in a
while.

Determining when exactly to clean up isn’t always a trivial task. Similar to how you
can use NSPersistentHistoryChangeRequest.fetchHistory(after:) to
fetch persistent history transactions, you can use NSPersistentHistoryChang-
eRequest.deleteHistory(before:) to delete persistent history transactions. You
can pass a token, date, or transaction to this method to clean up all history that was
accumulated before a certain point.

However, if your deletion strategy is too aggressive you’ll end up deleting records that haven’t
been consumed by all clients that share your Core Data store.

Donny Wals 178

Practical Core Data

Unfortunately, we can’t compare persistent history tokens to determine which client has
consumed the least amount of history and delete everything that the client that’s furthest
behind won’t need.

Luckily, it’s possible to clean up persistent history based on a date. In our app, we could
simply clean up all persistent history that’s older than an hour. Note that you want to be eager
when cleaning up, but not too eager. When you delete a persistent history entry that contains
your last stored token youmight end up in an unstable state in which your history tracking is
broken. This is typically accompanied by console warnings telling you that your token has
expired.

To remove entries from your database that are older than an hour you could add the following
code a�er looping through your history array:

// in processChanges(_:) after looping through history
let deleteRequest =

NSPersistentHistoryChangeRequest.deleteHistory(before:
Date().addingTimeInterval(-3600))

↪→

↪→

try context.execute(deleteRequest)

This code speaks for itself. It creates, and executes, a request that clears out the persistent
history that existed for longer than an hour.

When you add this code and add a breakpoint or print statement in your process-
Changes(_:) you’ll find that you’re now in an infinite loop. Great. . .

This happens because deleting persistent history transactions triggers a notification. This
invokes your processChanges(_:)method, you retrieve all changes since last time even
though there aren’t any, and a�er processing the empty list of transactions you clean up a�er
yourself again, and processChanges(_:) is called again.

It’s a good idea to only process transactions and execute a cleanup pass when there are
transactions to process.

This can be achieved by updating the guard statement that extracts the transactions from
the persistent history result that you receive when you execute your persistent history change
request:

Donny Wals 179

Practical Core Data

context.perform { [unowned self] in
do {

guard let result = try context.execute(request) as?
NSPersistentHistoryResult,↪→

let history = result.result as?
[NSPersistentHistoryTransaction],↪→

!history.isEmpty else {
return

}

// process history and clean up
} catch {

print(error)
}

}

The only thing I changed is that I use the guard to check whether the history isn’t empty using
!history.isEmpty. This will make sure that if processChanges(_:) is called andwe
don’t have anything to do, we don’t run the cleanup so we don’t end up in an infinite loop.

There’s one thing that I’m not a fan o� right now.

We’re keeping transactions around when we know that they were processed. Unfortunately, I
haven’t found a stable way to work around this when using tokens. I have, however, found a
stable way to properly clean up every unneeded transaction using dates.

First, add the following two helper functions to PersistentHistoryTracker:

func lastUpdated() -> Date? {
return UserDefaults.shared.object(forKey:

"PersistentHistoryTracker.lastUpdate.app") as? Date↪→

}

func persistLastUpdated(_ date: Date) {
return UserDefaults.shared.set(date, forKey:

"PersistentHistoryTracker.lastUpdate.app")↪→

}

Donny Wals 180

Practical Core Data

These twomethods read and write the last update date from the shared UserDefaults.

Next, we need to make a few changes to processChanges(_:):

@objc func processChanges(_ notification: Notification) {
// 1
let lastDate = self.lastUpdated() ?? .distantPast
let request = NSPersistentHistoryChangeRequest.fetchHistory(after:

lastDate)↪→

let context = persistentContainer.viewContext

context.perform { [unowned self] in
do {

guard let result = try context.execute(request) as?
NSPersistentHistoryResult,↪→

let history = result.result as?
[NSPersistentHistoryTransaction],↪→

!history.isEmpty else {
return

}

for transaction in history {
let notification = transaction.objectIDNotification()
context.mergeChanges(fromContextDidSave: notification)

// 2
self.persistLastUpdated(transaction.timestamp)

}

// 3
if let lastTimestamp = history.last?.timestamp {
let deleteRequest =

NSPersistentHistoryChangeRequest.deleteHistory(before:
lastTimestamp)

↪→

↪→

try context.execute(deleteRequest)
}

Donny Wals 181

Practical Core Data

} catch {
print(error)

}
}

}

I have marked the changes with comments numbered one, two, and three.

The first comment changes a call to lastToken() into a call to lastUpdated(). If we
don’t have a last updated date in UserDefaults, I use .distantPast instead. Next, I
use this date to obtain a change request.

The second comment is where I replacedmy call topersistLastToken(_:) with a call to
persistLastUpdated(_:) to persist the current transaction’s timestamp rather than
its token.

The third comment uses the timestamp from the last history entry and uses that timestamp as
an entry point to clean up the persistent history. Note that the last timestamp in thehistory
is always the most recent timestamp since all persistent history transactions are presented in
the order that they occurred in.

This code works, and I like the idea that we’re now actually cleaning up everything that we
possibly can rather than relying on an arbitrary number tomake sure the stored token doesn’t
expire.

With this setup, we have something that will work perfectly fine if you want to apply persistent
history tracking in a single app.

This chapter promised you that we’d add support for multiple apps and extensions sharing
a Core Data store though. So let’s see what changes need to bemade to the Persisten-
tHistoryTracker to properly support multiple clients sharing a single Core Data store.

Using persistent history tracking withmultiple apps and
extensions

As I mentioned before, the workspace for this chapter contains two separate apps. One app is
written in UIKit, the other is written in Swi�UI. They both belong to the same App Group and

Donny Wals 182

Practical Core Data

they share a Core Data store. The previous section showed you how you can use persistent
history tracking to keep track of changes that don’t produce amanaged object context did
save notifications such as a batch insert.

I alreadymentioned that persistent history tracking can also be used to keep a Core Data store
in sync whenmultiple apps or extensions share the same underlying storage. Usually, when
you insert or remove records in one place, the other places should update automatically to
accurately present content to the user.

The persistent history implementation that I showed you in the previous section works just
fine for a single app but it breaks down quickly when you scale it to multiple apps.

UserDefaults is used to persist when we last consumed the persistent history and we clean
up all history before the last transaction that we processed a�er any new persistent history
transactions.

To make our approach scale to multiple applications, we’re going to have to make some
changes. Luckily these changes are relatively simple and they require very little work.

In the current implementation I used the following code to read and write the last updated
Date to a shared UserDefaults suite:

func lastUpdated() -> Date? {
return UserDefaults.shared.object(forKey:

"PersistentHistoryTracker.lastUpdate.app") as? Date↪→

}

func persistLastUpdated(_ date: Date) {
return UserDefaults.shared.set(date, forKey:

"PersistentHistoryTracker.lastUpdate.app")↪→

}

The issue here is that we use the same key for every actor that consumes the persistent history.
Note that I used the term actor here. Instead of typing “app or extension” every time, I will
refer to these as actors. So whenever I write “actor” in this section I’m referring to an app or
extension.

When we fix this issue, and use a separate key for every actor in our App Group we can query

Donny Wals 183

Practical Core Data

the persistent history for all transactions a�er a certain date where that date is equal to the
last time that actor has imported the persistent history transactions.

If you have a unique Swi� file that contains your persistent history tracker the fix for this
is simple. You can hardcode the user defaults key andmake sure it’s unique. However, I’m
going to assume that you use a single file that’s shared between all targets or included in a
framework. In the sample code for this chapter, I have placed the persistent history tracker in
a framework that’s used by both the UIKit and the Swi�UI app.

To facilitate this change and have a unique user defaults key for each actor, you can define an
enum that holds all actors that you want to identify in the persistent history tracker:

public enum StorageActor: String, CaseIterable {
case swiftuiApp, uikitApp

}

This StorageActor enum has two cases. One for each target in my App Group. The enum
is also CaseIterable so I can iterate over the cases later when I change the cleanup logic
that’s used a�er consuming the persistent history transactions.

When the PersistentHistoryTracker is initialized, it makes sense to configure it for a
specific actor immediately since every instance of the history tracker belongs to a single app.
The init for the PersistentHistoryTracker should be updated as follows:

class PersistentHistoryTracker {
private let persistentContainer: NSPersistentContainer
private let actor: StorageActor

init(persistentContainer: NSPersistentContainer, actor:
StorageActor) {↪→

self.persistentContainer = persistentContainer
self.actor = actor

NotificationCenter.default.addObserver(self, selector:
#selector(processChanges),↪→

name:
.NSPersistentStoreRemoteChange,↪→

Donny Wals 184

Practical Core Data

object:
persistentContainer.persistentStoreCoordinator)↪→

}
}

To initialize the PersistentHistoryTracker, it needs a StorageActor so it knows
which actor it belongs to. We can then update the lastUpdated() and persistLas-
tUpdated(_:)methods as follows:

func lastUpdated() -> Date? {
return UserDefaults.shared.object(forKey:

"PersistentHistoryTracker.lastUpdate.\(actor.rawValue)") as?
Date

↪→

↪→

}

func persistLastUpdated(_ date: Date) {
return UserDefaults.shared.set(date, forKey:

"PersistentHistoryTracker.lastUpdate.\(actor.rawValue)")↪→

}

With this change, calling lastUpdated()will return the last update date for the actor that
is used for this instance of PersistentHistoryTracker. This is all the work needed to
make sure that each actor receives persistent history transactions that are relevant for that
actor. For example, if the Swi�UI app has made several changes to the store and the UIKit app
is opened each will know its own place in history since their update dates are tracked using
separate keys in UserDefaults.

In the previous section, I showed you how to initialize the PersistentHistoryTracker.
Here’s a refresher:

public class StorageProvider {

public static var standard = StorageProvider()
private let historyTracker: PersistentHistoryTracker

Donny Wals 185

Practical Core Data

// more properties

public init() {
persistentContainer = PersistentContainer(name: "Model")
historyTracker = PersistentHistoryTracker(persistentContainer:
persistentContainer)↪→

// more configuration
}

}

Since the history tracker now requires a StorageActor, and we can’t access the history
tracker fromoutside theStorageProvider, we’ll need to change how the storage provider
is initialized as follows:

public class StorageProvider {

private let historyTracker: PersistentHistoryTracker

// more properties

public init(_ actor: StorageActor) {
persistentContainer = PersistentContainer(name: "Model")
historyTracker = PersistentHistoryTracker(persistentContainer:
persistentContainer, actor: actor)↪→

// more configuration
}

}

The StorageProvder now takes a StorageActor as an initializer argument. Note that
I’ve removed the standard property. The reason for this is that each actor will create its
own StorageProvider that’s configured specifically for that actor. This means that a
standard instance defined in the framework no longer makes sense since each actor needs
a di�erent storage provider.

Donny Wals 186

Practical Core Data

To continue using a shared singleton of StorageProvider in each individual app or exten-
sion, you can add an extension inside of your app (or extension) as follows:

// Defined in the SwiftUI app
extension StorageProvider {

static var standard = StorageProvider(.swiftuiApp)
}

This extension adds a standard instance of StorageProvider for the Swi�UI applica-
tion only. The only requirement is that you add this extension to a file that belongs to the
corresponding app rather than in the framework itself.

A similar extension can be added to the UIKit app:

extension StorageProvider {
static var standard = StorageProvider(.uikitApp)

}

By adding the StorageActor and using them to generate unique user defaults keys you
have done all the work needed to query the persistent history correctly for each actor.

In the previous section I showed you the following code to clean up the persistent history a�er
processing all transactions for a specific actor:

if let lastTimestamp = history.last?.timestamp {
let deleteRequest =

NSPersistentHistoryChangeRequest.deleteHistory(before:
lastTimestamp)

↪→

↪→

try context.execute(deleteRequest)
}

This codewill delete all persistent history transactions that precede the last processed transac-
tion. This is problematic because while the Swi�UI appmight have consumed all transactions,
the UIKit appmight not yet have processed these transactions.

We only want to delete history that was consumed by all actors. To do this, we need to find
the least recent updated timestamp amongst all actors.

Donny Wals 187

Practical Core Data

To do this, you can iterate over all StorageActor cases, reading the last update date for
each actor from UserDefaults and use the least recent timestamp as the cuto� point for
deleting history. To do this, you can add the following method to your persistent history
tracker:

func leastRecentUpdate() -> Date? {
return StorageActor.allCases.reduce(nil) { currentLeastRecent,

actor in↪→

guard let updateDate = UserDefaults.shared.object(forKey:
"PersistentHistoryTracker.lastUpdate.\(actor.rawValue)") as? Date
else {

↪→

↪→

return currentLeastRecent
}

if let oldDate = currentLeastRecent {
return min(oldDate, updateDate)

}

return updateDate
}

}

The code in thismethod uses Swi�’sreduce to iterate over all cases on theStorageActor,
reads the last update date for that actor from UserDefaults and returns the oldest date.

To use this method you only need to apply a minor update to the cleanup logic:

if let lastTimestamp = leastRecentUpdate() {
let deleteRequest =

NSPersistentHistoryChangeRequest.deleteHistory(before:
lastTimestamp)

↪→

↪→

try context.execute(deleteRequest)
}

With this code in place, each app will be able to properly consume the persistent history
transactions as the persistent history notifications are delivered to the app, and wemake sure

Donny Wals 188

Practical Core Data

to only delete transactions that were consumed by all apps.

To try this approach, you can run the Swi�UI app from this chapter’s code bundle, and imme-
diately a�er run the UIKit version. When you insert items in the Swi�UI app and switch to the
UIKit app, all inserted records will magically appear in the UIKit app. When you tap the delete
all button in the UIKit app and go back to the Swi�UI app, all records generated by the Swi�UI
app will automatically disappear.

Magical, isn’t it?

In Summary
Whether you’re building a suite of apps, adding extensions to one of your apps, or want to
properly update your UIwhen using batch operations, persistent history tracking is your friend.
In this chapter, I explained how you can use batch operations in your app, and you learned
that these operations do not trigger managed object context did save/change notifications
because they bypass managed object context saving.

You saw that you can use persistent history tracking to observe changes to your persistent
store, allowing you to respond to batch operations. I showed you how you can enable persis-
tent history tracking and how you can implement a persistent history tracker that observes
persistent history-related notifications, queries the persistent history, processes new persis-
tent history transactions, and then cleans up a�er itself by deleting processed transactions
from the device’s storage.

In the last section of the chapter, I demonstrated how you can expand persistent history
tracking to multiple apps and extensions by using a unique UserDefaults key for each
app or extension. The process of querying and processing persistent history transactions
doesn’t change at all. The cleanup of the persistent history did slightly change because the
tracker should only delete transactions that were consumed by all clients. I showed you
how to determine this by comparing the last updated timestamps for all StorageActor
cases where each case represents one of the clients that is expected to use persistent history
tracking.

The code that I showed you in this chapter is well suited to be used in a framework that
wraps Core Data and hides some of its complexities from your apps. In the next chapter, we’ll

Donny Wals 189

Practical Core Data

continuedown this path and Iwill showyou someof themost commonanduseful abstractions
and convenience methods that I regularly add to my Core Data projects.

Donny Wals 190

Practical Core Data

Chapter 7 - Synchronizing your store with
a remote data source
A common use for Core Data stores is to use them as a means to support o�line capabilities
for an app. I purposely avoid calling this a cache because the way that Core Data is used for
o�line capabilities is o�enmore complex than a typical cache would be.

For example, when you use Core Data as an o�line copy of your remote data source you will
be able to populate multiple screens with the data that you have stored locally in your data
store. You can query the data store depending on the user’s needs, and the user might be able
to make modifications to records in the store that are sent back to the remote when possible.
These capabilities make Core Data more than just a cache, andmuchmore like a local store
that happens to be synced with a remote source.

In this chapter, you will learn about synchronizing a Core Data store with a remote source in
two steps:

1. Using a remote data source to populate a local store
2. Synchronizing local changes to a remote store

A syncing strategy will always be dependent on what the remote service that you’re synchro-
nizing with looks like. Because of this, the solutions that I demonstrate in this chapter are
as generic as possible but might not be suitable for every situation. For every step along the
way, you will learn why I made a certain decision, what alternatives youmight consider and
when they are applicable. I want you to focus on the rationale more than the literal code in
this chapter since I can’t provide examples for every possible remote solution that you might
want to sync with; there simply are toomany variables.

While every back-end is di�erent and you might have to make some modifications to the
code in this chapter, most synchronization strategies have a lot of common patterns. So no
matter what your back-end looks like, you should be able to learn some valuable lessons
about synchronizing your Core Data store from this chapter.

Note that this chapter’s code bundle only contains a Swi�UI project. The bulk of the work
for this chapter is done in the Chapter 7 framework that’s in the workspace for this chapter,
so there isn’t a lot of value in providing two sample apps for this chapter. To run the sample

Donny Wals 191

Practical Core Data

app and play with the importer, make sure you open the .xcworkspace file in the code
bundle.

Using a remote data source to populate a
local store
Populating a local store with remote data is, in itself, not the most complex task I can think of.
It will usually involvemaking a network call to fetchData, converting this data intoCodable
models using a JSONDecoder and then persisting the data locally. This could be in a Core
Data store but it could also be somewhere else.

In its simplest form, youwouldn’t even convert your data tomodels. You’d just write theData
to your app’s Documents directory. When the time comes to use the data, you load the file,
convert the Data from the file to Codablemodels and you’re good to go.

A simple strategy that uses the documents directory is perfect when all you need is a simple
cache for a simple data structure.

When your storage needs are more complex, an approach like this quickly becomes unwieldy
and you’ll likely run into issues. For example, imagine an app that displays information about
points of interest near your current location. This app would likely be used by tourists which
could mean that cellular data is very expensive for your user. To avoid racking up a huge
roaming bill you write your app so it caches data that’s retrieved from the server.

When your user is at their hotel they can use data, look up interesting things to do and the user
can mark them as favorite to easily access their favorite locations later. Because you want
your user experience to be great, you store all the user’s favorites locally alongside all points
of interest that you loaded. This means that you can rack up quite the number of points of
interest.

Depending on how the back-end is structured, you might need multiple calls to the server
to fetch every point of interest that you display in the UI. This is especially true if your user
searches for points of interest in several cities for example.

I’m sure you can imagine that an app like this will pull in quite some points of interest during
a single session. When you’d write every API response to the documents directory as Data

Donny Wals 192

Practical Core Data

you’d end up with an unwieldy cache that’s hard to use and can’t easily be queried by the
user.

For example, to find all of the user’s favorites you’ll need to either duplicate data between a
file that stores favorites or you can store a list of identifiers, load all persisted files, and filter
them for the identifiers that the user marked as a favorite.

To make matters worse, it might be possible for multiple persisted responses to contain
duplicate points of interest. And in a big city, we could be talking about hundreds of points of
interest that wemight want to show on amap.

For a scenario like the one I just described, itmakes perfect sense to store eachpoint of interest
as a Core Data entity. This will allow us to query the database for all relevant points of interest
and we can easily track which points of interest were marked as favorite by the user. It’s also
much easier to avoid storing duplicate data when using Core Data.

Using a JSON response to populate a Core Data store

Typically, when you fetch data from a server this data will be sent to you in a JSON format.
Other formats like XML exist, but they’re very rarely used so for now I will focus only on JSON
data.

The first step to populating your Core Data store with JSON data is to think of a design that
will provide you with a robust API for a data importer. Usually, I like to design my importer API
in a way that supports two di�erent approaches:

1. A passive approach; fetch data from the network like normal and store the fetched
objects in Core Data

2. An active approach; run an importer to fetch data and store it in Core Data

The scenario that I outlined in the introduction for this section fits best with the first approach.
We’ll want to fetch points of interest, show them to the user and write them to Core Data for
later use. An active approach would work best for an application that has a small to medium-
sized data set that can be synchronized to the device to limit the amount of network tra�ic
needed for the app to function. It’s also well suited for situations where you know exactly
which data you will need and your back-end supports fetching this data in one go.

Donny Wals 193

Practical Core Data

Regardless of the approach that best fits your use case, the import logic doesn’t change. It
shouldn’t have to at least.

Since both approaches are expected to take Data and persist it to Core Data it makes sense
to write an importer that does the following:

• Accept Data as its input
• Decode Data to the appropriate model type
• Persist the model to Core Data

With this approach, you’ll be able to plug the importer in wherever you need it since it takes
Data that you fetched from the network. To decode theData into the correctmodel type the
importer will need to use generics and to persist to Core Data we’re going to needmanaged
objects.

We can capture all of this in the following skeleton for a DataImporter class:

public class DataImporter {
private let context: NSManagedObjectContext

init(context: NSManagedObjectContext) {
self.context = context

}

public func importData<T: NSManagedObject & Decodable>(_ data:
Data, as model: T.Type) {↪→

}
}

As you might expect, the data importer is initialized with a managed object context that
should be used to run the import in. The data importer has a single method called import-
Data(_:as:) that we can use to import Data and convert it to instances of managed
objects as long as the managed object conforms to the Decodable protocol. This will allow
us to use a JSONDecoder to decode the Data directly into managed objects without any
additional work.

Pretty neat, right?

Donny Wals 194

Practical Core Data

Before we define an NSManagedObject that conforms to Decodable we can go ahead
and write the method body for importData(_:as:):

public func importData<T: NSManagedObject & Decodable>(_ data: Data,
as model: T.Type) {↪→

context.perform { [unowned self] in
let decoder = JSONDecoder()
decoder.userInfo[.managedObjectContext] = self.context

do {
_ = try decoder.decode(model, from: data)
try self.context.save()

} catch {
if self.context.hasChanges {
self.context.rollback()

}

print("Failed to insert models")
print(error)

}
}

}

This code probably contains at least one line that you haven’t seen before:

decoder.userInfo[.managedObjectContext] = self.context

I’ll explain what that line does in amoment. Let’s look atimportData(_:as:) from a high
level first.

Since the intent of importData(_:as:) is to interact with managed objects and the im-
porter’scontextproperty I use theperformmethod to runmy codeon the context’s queue.
In my perform’s closure body I create an instance of JSONDecoder and I associate a man-
aged object context with its userInfo dictionary. Next, I decode the Data into the model
type T.Type that was passed to importData(_:as:). If that succeeds I call save() on
the context and the import is done.

Donny Wals 195

Practical Core Data

If the decode or save fails I check whether the managed object context has any pending
changes using its hasChanges property. If there are any unsaved changes they are rolled
back. This will make sure that any objects that failed to save due to validation errors are
removed frommy context so they don’t prevent subsequent saves from succeeding.

This method is very simple, right? It’s probably a lot simpler than you expected.

And while we’re not going to make the importData(_:as:) any more complex than it is
right now, we’re not quite done yet.

As you know, managed objects are associated with a managed object context when you
initialize them. Currently, there is nothing that establishes this relationship since the
init(context:) method is not called when we attempt to decode the Data using a
JSONDecoder. Instead, the init(from:)method is called. We’ll need to implement our
own init(from:) on all managed objects that we want to conform to Decodable.

Throughout the restof this chapter I’mgoing touse the followingJSONdataasa representation
for my data:

[
{

"address":"Address 0",
"city":"Amsterdam",
"information":"Some information about POI 0",
"longitude":8.9876003265380859,
"country":"The Netherlands",
"latitude":10.12339973449707,
"identifier":"1975DB51-5A45-4FD6-AC54-46CA6042C710",
"name":"POI 0"

},
// etc...

]

Consider the following managed object subclass that represents a very basic example of a
possible point of interest that an appmight use:

Donny Wals 196

Practical Core Data

class PointOfInterest: NSManagedObject {
@NSManaged var address: String
@NSManaged var city: String
@NSManaged var country: String
@NSManaged var identifier: UUID
@NSManaged var information: String
@NSManaged var latitude: Float
@NSManaged var longitude: Float
@NSManaged var name: String

}

Note that this model’s properties have types that you might not expect. For example, none of
the properties are Optional in my subclass.

The reason for this is that I defined these managed object subclasses by hand rather than
letting Xcode generate them for me. This is a perfect example of how Core Data will perform
bridging between your Swi� types and the internally used Objective-C types.

I’ve definedmymodel by hand so it can bemade Decodable. To make the decoding logic
for our managed object work correctly, we need to add the init(decoder:) initializer to
themanaged object subclass. Unfortunately, this can’t be done in an extension. You could use
the Category/Extension code generation type for your managed objects since this also gives
you control over the initializer. However, I thought this was a nice way to showcase defining a
managed object by hand from scratch.

To make the managed object I showed you earlier conform to Decodable its declaration
has to be updated toclass PointOfInterest: NSManagedObject, Decodable,
and you need to implement the init(decoder:)method.

Since we’re implementing a custom initializer, Swi� will not generate any Decodable code
for us, so in addition to an init you need to define a CodingKeys enum.

Let’s see what this looks like for PointOfInterest:

public class PointOfInterest: NSManagedObject, Decodable {
enum CodingKeys: CodingKey {

case address, city, country, identifier,

Donny Wals 197

Practical Core Data

information, latitude, longitude, name
}

@NSManaged public var address: String
@NSManaged public var city: String
@NSManaged public var country: String
@NSManaged public var identifier: UUID
@NSManaged public var information: String
@NSManaged public var latitude: Float
@NSManaged public var longitude: Float
@NSManaged public var name: String

public required convenience init(from decoder: Decoder) throws {
guard let context = decoder.userInfo[.managedObjectContext] as?
NSManagedObjectContext else {↪→

fatalError("Attempt to decode managed object with misconfigured
decoder.")↪→

}

self.init(context: context)

let container = try decoder.container(keyedBy: CodingKeys.self)
self.address = try container.decode(String.self, forKey:

.address)↪→

self.city = try container.decode(String.self, forKey: .city)
self.country = try container.decode(String.self, forKey:

.country)↪→

self.identifier = try container.decode(UUID.self, forKey:
.identifier)↪→

self.information = try container.decode(String.self, forKey:
.information)↪→

self.latitude = try container.decode(Float.self, forKey:
.latitude)↪→

self.longitude = try container.decode(Float.self, forKey:
.longitude)↪→

Donny Wals 198

Practical Core Data

self.name = try container.decode(String.self, forKey: .name)
}

}

This customdecoding logic is apretty standard implementationofacustominit(decoder:).
The most interesting part of this code is the following:

guard let context = decoder.userInfo[.managedObjectContext] as?
NSManagedObjectContext else {↪→

fatalError("Attempt to decode managed object with misconfigured
decoder.")↪→

}

self.init(context: context)

This code extracts a managed object context from the decoder’s userInfo. Remember that
we added amanaged object context to a JSONDecoder earlier? This is why.

Because we can extract a managed object context from the decoder, we can use this context
to call our managed object’s init(context:)method. A�er this, we can begin the heavy
work of decoding all properties that we need to assign to our managed object.

It takes a bunch of manual labor but I think this approach to importing data is quite elegant
and flexible.

Unfortunately, it also has some downsides.

This approach creates a managed object instance for every item that you wish to import and
associates this instance with your managed object context. This means that the context will
keep as many of these objects in memory as possible which could result in some significant
overhead when importing large amounts of data.

While working on this chapter, I used a sample data set that includes 10.000 points of interest.
This is a lot, and it does a good job of showing the memory impact that our current data
importer has:

Donny Wals 199

Practical Core Data

Figure 27: The current importer spikes to 25.9MBmemory usage

What if I told you we could reduce memory usage by about 10MB?

Let’s see how.

Improving your data import with batch inserts

In Chapter 6 - Sharing a Core Data store with apps and extensions, you saw an example
of a batch insert request. I alreadymentioned that batch inserts can help you keep a small
memory footprint while importing vast amounts of data. It should be no surprise that batch
inserts can help reduce the memory usage of our data importer.

Unfortunately, the Decodable approach we used earlier is not quite compatible with batch
inserts. I wouldn’t recommend against using Decodablewith your managed objects since
it’s convenient and easy to use, but when performance matters and you’re dealing with larger
imports it’ll make sense to go down a slightly di�erent route.

Luckily, moving to batch imports isn’t too complex. In an ideal world, we could write a new
import method that takes Data, converts it to an array of dictionaries, and uses it in a batch

Donny Wals 200

Practical Core Data

insert request.

Here’s what the code for that would look like:

func optimizedImportData(_ data: Data, as entity:
NSEntityDescription) {↪→

context.perform { [unowned self] in
do {

let entries = try JSONSerialization.jsonObject(with: data,
options: []) as! [[String: Any]]↪→

let batchImport = NSBatchInsertRequest(entity: entity, objects:
entries)↪→

try self.context.execute(batchImport)
} catch {
print("Failed to batch import")
print(error)

}
}

}

If your JSON data contains values that can automatically be converted to their corresponding
values on your managed object subclasses, this approach will work like a charm.

Note that I’m not using JSONDecoder here. The reason is simple. I want to decode into
[[String: Any]] so I can have a dictionary with String keys, and anything as a value.
Mydictionarymight containotherdictionaries, integers, strings, floats, andanythingelse that’s
valid in JSON. This, unfortunately, can’t be represented in a way that uses Decodable.

Unfortunately, the JSON that I showed you earlier contains an identifier field that holds
a String. Our model has an identifier property that’s of type UUID. When you’re
working with Decodable, a String value can be decoded into a UUID. Unfortunately, this
isn’t possible with a batch request. This means that we’re going to have to do a little bit of
manual work using the batch insert request version that I showed you before. This approach
uses a closure to populate a mutable dictionary for every item that should be imported:

Donny Wals 201

Practical Core Data

func importPointsOfInterest(_ data: Data) {
context.perform { [unowned self] in

do {
var entries = try JSONSerialization.jsonObject(with: data,

options: []) as! [[String: Any]]↪→

let batchImport = NSBatchInsertRequest(entity:
PointOfInterest.entity(), dictionaryHandler: { dictionary
in

↪→

↪→

let entry = entries.removeFirst()

dictionary["address"] = entry["address"] as! String
dictionary["city"] = entry["city"] as! String
dictionary["country"] = entry["country"] as! String
dictionary["information"] = entry["information"] as! String
dictionary["latitude"] = entry["latitude"] as! Float
dictionary["longitude"] = entry["longitude"] as! Float
dictionary["name"] = entry["name"] as! String

let uuid = UUID(uuidString: entry["identifier"] as! String)!
dictionary["identifier"] = uuid

return entries.isEmpty
})
try self.context.execute(batchImport)

} catch {
print("Failed to batch import")
print(error)

}
}

}

This method extracts an array of dictionaries from the Data that it received. Next, I create my
NSBatchInsertRequest instance.

In the closure, I remove the first dictionary frommy array of dictionaries. This will mutate the

Donny Wals 202

Practical Core Data

original entries property by removing the first item in the array and returning it.

Next, Imanually copyandcast eachdictionary value. Note that I don’thave todo this. However,
it’s a nice way of getting the app to crash if we received invalid data which is perfectly fine for
now. In a production environment, youmight want to fail more gracefully and log an error
somewhere.

Note that it takes some extra work to properly extract the identifier property:

let uuid = UUID(uuidString: entry["identifier"] as! String)!
dictionary["identifier"] = uuid

Since a String can’t be converted to UUID automatically, this has to be done manually.
These two lines are the entire reason we couldn’t use the version of NSBatchInsertRe-
quest that takes an array of dictionaries.

The batch import is over when all entries in the entries array are processed. For this reason
I return entries.isEmpty from the closure since the insert request will continue calling
this closure until I return true.

When the import for 10.000 points of interest runs using a batch insert request, the app’s
memory usage looks as follows:

Donny Wals 203

Practical Core Data

Figure 28: The improved import only used 16.2MB of memory

Wemanaged to shave o� almost 10MB of memory usage by using a dictionary-based batch
import rather than an import that loads all managed objects in memory. While the example of
10.000 records to import is somewhat extreme, this improvement is huge and it goes to show
how you can fine-tune your Core Data application if you knowwhich tools are available for
you. In Chapter 10 - Debugging and profiling your Core Data implementation I will show
you somemore tools that you can use to make improvements to your applications.

While it’s amazing that we can improve the importer’s memory usage somuch, there’s one
major downside to batch inserts that I alreadymentioned in Chapter 6 - Sharing a Core Data
store with apps and extensions. We can only use batch inserts for objects that don’t have
relationships.

In real-life a PointOfInterest is very likely to have one or more relationships so you
wouldn’t be able to import them as JSON using a batch insert. The Decodable approach
from the previous section works fine for this purpose even though it’s less e�icient.

I’ve found that calling reset() on your import managed object context a�er saving it helps
reduce your memory footprint when importing data using the Decodablemethod since it
will clear out the managed object context’s cache and makes the managed object context

Donny Wals 204

Practical Core Data

“forget” about all of the managed objects it fetched. In my tests this brought the memory
usage a�er the import down to a level that was similar to that of a batch insert, the peak
memory usage was still higher though.

Performing incremental updates based on remote data

Importing data from a remote source is a great way to provide an o�line experience for your
users. However, it’s not uncommon for data to be dynamic. Some data changes at a very
regular interval. For example, once every day. This allows you to implement a very predictable
synchronization strategy in your app.

Other times, the interval at which your remote data changes is irregular, and you’d want to
update your local copy as o�en. For example, you might want to update your local data every
time your app launches.

Regardless of the interval at which your data changes and how your back-end informs your
app about the most up-to-date state of a�airs, you’re going to want to process incoming
changes as e�iciently as possible.

The simplestway to update your local Core Data copywould be to delete your entire local store
and then re-insert any objects that you receive from the server. And while it’s the simplest
way, it’s also the worst strategy. To rebuild your entire local store, you would need to request
all data from your server. This might mean that your transferring vast amounts of data which
is slow and could cost your user a lot of money if they aren’t on an unlimited data plan.

It’s far more common for a server to send you an incremental update for the data that you’re
interested in. For example, I have worked with back-ends that would include a timestamp
or token in their responses for data synchronization. When you want to fetch new data you
simply pass the timestamp or token to the server as a query parameter in the URL, and the
server knows exactly which data you’re interested in. The server then constructs a response
that includes new andmodified records only along with a new timestamp or token that can
be used the next time you want to sync with your server.

Incremental updates are fantastic but they also come with an interesting challenge when
importing data into a Core Data store.

To be specific, we want to gracefully deal with preventing data duplication in the Core Data
store.

Donny Wals 205

Practical Core Data

You already know that Core Data is not an SQLite database. This means that you don’t use
primary keys, foreign keys, or unique constraints the way youmight use them in an SQLite
database. When you’re inserting data into an SQLite database it’s possible to perform a
so-called UPSERT to avoid data duplication. An upsert in SQLite works as follows:

• Attempt to execute an INSERT query to insert new data.
• If this fails due to a uniqueness error, update the existing record with data from the
INSERT query.

In this case, a uniqueness error means that the inserted object contains one or more fields
that are marked as unique in the table. This means that every record in that table must have
a unique value for that specific field. A good example of this is an id or identifier field
that’s used to uniquely identify a record in a table.

While Core Data isn’t an SQLite wrapper and should not be treated as one, we sometimes do
want to rely on some of SQLite’s mechanisms. The ability to perform an upsert is one of these
mechanisms that we’ll want to leverage in our database.

There are two approaches we can take to perform an upsert in Core Data:

1. Do all the work manually
2. Have Core Data deal with the upsert

Inmost cases, it’s best to let Core Data handle your upserts. It saves you trouble, and it’s much
more performant than doing the work manually.

I will explain more a�er I demonstrate how you can set up a unique constraint and merge
policy. First, we’re going to make a slight modification to the PointOfInterestmodel so
we have a slightly more complex model to work with. I’ve added the following property to my
model:

@NSManaged var category: PoiCategory

This property represents a non-optional relationship to aPoiCategory entity. Before I show
it to you, the init(decoder:) implementation needs to be updated with the following
line:

Donny Wals 206

Practical Core Data

self.category = try container.decode(PoiCategory.self, forKey:
.category)↪→

And lastly, the PoiCategorymodel needs to be defined:

class PoiCategory: NSManagedObject, Decodable {
enum CodingKeys: CodingKey {
case name

}

@NSManaged var name: String
@NSManaged var pointsOfInterest: Set<PointOfInterest>

required convenience init(from decoder: Decoder) throws {
guard let context = decoder.userInfo[.managedObjectContext] as?
NSManagedObjectContext else {↪→

fatalError("Attempt to decode managed object with misconfigured
decoder.")↪→

}

self.init(context: context)

let container = try decoder.container(keyedBy: CodingKeys.self)
self.name = try container.decode(String.self, forKey: .name)
self.pointsOfInterest = []

}
}

Notice that I’musing aSet<PointOfInterest> instead of NSSet formypointsOfIn-
terest relationship. Because I’m defining mymodels manually I can use a Swi� type that’s
automatically bridged to Objective-C.

If you’re following along, don’t forget to update your data model file. I’m sure you’re going
to be fine doing this on your own. The name property on PoiCategory should bemarked
non-optional.

Donny Wals 207

Practical Core Data

The JSON that I’m using for my import logic from now on will look as follows:

[
{

"address":"Address 0",
"city":"Amsterdam",
"information":"Some information about POI 0",
"longitude":8.9876003265380859,
"country":"The Netherlands",
"latitude":10.12339973449707,
"identifier":"1975DB51-5A45-4FD6-AC54-46CA6042C710",
"name":"POI 0",
"category": {

"name": "Category name"
}

},
// etc...

]

There are two things that I want to ensure in my data store.

1. I want to make sure I only have one point of interest stored per unique identifier
2. I want to make sure I only have one category stored per name

The easiest way to set this up is to define the category’s name and the point of interest’s
identifier as unique properties in the model editor.

You can do this by selecting the entity that youwant to add a unique constraint to in themodel
editor and adding the property that you want to make unique to the Constraints section as
shown in the following image:

Donny Wals 208

Practical Core Data

Figure 29: The identifier property is used as a unique constraint for PointOfInterest

A�er adding a unique constraint for PointOfInterest’s identifier, make sure you
add one for PoiCategory’s name as well.

Note: If you’re following along with the steps in the chapter, your app will crash if you
attempt to run it a�er adding PoiCategory and configuring your unique constraints.
This happens because your data store needs to migrate from your old data model to the
newmodel but can’t do this automatically since you added a non-optional relationship
to PointOfInterest. In Chapter 9 - Updating your data model and performing
migrations you will learn more about database migrations and versioning your model.
For now, you can delete your app and reinstall it to get rid of the old datastore and create
a new one. It’s not an elegant solution but during development, this is o�en the easiest
solution since your data model might change a couple of times before you ship your app
or update to users that expect a smooth migration from your app’s old data model to its
new data model.

If you were to run the importer with these constraints in place, you will soon find that Core

Donny Wals 209

Practical Core Data

Data starts failing your save() calls. The reason for this is that you’re importing multiple
category objects with the same name. The error you would see should look a bit like the
following:

Error Domain=NSCocoaErrorDomain Code=133021 "(null)"
UserInfo={NSExceptionOmitCallstacks=true, conflictList=(↪→

"NSConstraintConflict (0x600003134080) for constraint (\n
name\n): database: (null), conflictedObjects: (\n
\"0x600002435be0

↪→

↪→

... etc ...

This tells you that the save() failed due to a constraints error and Core Data didn’t know
how to automatically resolve this conflict. Aside from resolving this conflict manually, we can
choose one of the following automatic conflict resolution algorithms:

• NSMergePolicy.mergeByPropertyStoreTrump: Discards the in-memory
changes for the conflicting object in favor of the version in the persistent store.

• NSMergePolicy.mergeByPropertyObjectTrump: Overwrites theobject in the
persistent store with the version that’s in-memory (will act the same as overwrite in
lots of cases).

• NSMergePolicy.overwrite: Overwrites the entry in the persistent store with the
in-memory version.

• NSMergePolicy.rollback: Discards all changes in-memory in favor of the store’s
objects.

• NSMergePolicy.error: This is the default policy which throws an error if a merge
conflict occurs.

In our case, we want to update the locally kept copy of a record with the newly retrieved data.
This means that we’re looking for the mergeByPropertyObjectTrump merge policy.
This happens to be the merge policy that Apple recommends when you want to perform an
upsert.

Merge policies are configured at themanaged object context level. Thismeans that you should
set the mergePolicy property on the managed object context that you plan to use for your
import. Assigning the mergePolicy can be done as follows:

Donny Wals 210

Practical Core Data

persistentContainer.viewContext.mergePolicy =
NSMergePolicy.mergeByPropertyObjectTrump↪→

In this case, I’m setting a merge policy on my viewContext since that’s where I plan to run
my import. I’m using the mergeByPropertyObjectTrumpmerge policy so any remote
changes are used to overwrite my local store. Running the import nowworks beautifully, no
errors are thrown, and when any data was changed on the server, these changes overwrite
the existing data in the underlying store.

Merge policies are a very powerful tool for any developer that works with Core Data, especially
if you’re using Core Data to build an o�line data store that helps to provide a great o�line
experience for your users. I highly recommend that you experiment with the sample project
for this chapter in the code bundle to see how di�erent merge policies behave. It would be
even better if you have an app of your own where you can experiment with merge policies
since this would allow you to improve your application right away.

If the provided merge policies don’t suit your needs, you can create a subclass of NSMerge-
Policy and write custom logic to deal with merge conflicts. For my projects, I have yet to
find a need for custommerge policies and I wouldn’t consider writing a custommerge policy
something that you’re likely going to end up doing. I did want to make sure that you’re aware
of the ability to subclassNSMergePolicy and implement custom conflict resolution so that
if the need arises, you know that there’s a tool that youmight want to leverage.

Synchronizing local changes to a remote
store
Fetching data froma remote resource and storing it locally to provide an o�line experience can
boost your app’s engagement andmore importantly, it can help your users save precious data
since you only have to request data once. However, some apps allow users to generate and
modify data locally on their device. These modifications should eventually be synchronized
back to the back-end so it can be processed on the server andmade available on your user’s
other devices. There aremany other reasonswhy an applicationwould need a synchronization

Donny Wals 211

Practical Core Data

feature and if you’re reading this section I’m sure youmight have an idea of data that you’d
like to synchronize between your app and a server.

A two-way synchronization like this can take quite some e�ort to implement. Especially if you
want to allow your user to make changes while they’re o�line, and process all their changes
once the internet connection is established again.

In this section, I will introduce a synchronization strategy that might be useful for you. Just
like in the previous section, I can’t decide what your back-end will or should look like. For
this reason, I will provide you with an example that is as generic and flexible as I can make it,
allowing you to adapt it as needed so you can integrate it in your app.

Deciding on a synchronization strategy

Themost important part of any two-way synchronization strategy is to determine how you
will send updates to your back-end. Will you synchronize changes to the server as they occur?
Will you collect changes and only send them to the server when you reach a certain number of
changes? Ormaybe it’s a good idea to collect changes for a specified amount of time and send
all collected changes to the server on an interval? And what do you do when you can’t send
your local data to the server? For example, if the user doesn’t have an internet connection.

Nomatter what your strategy is, they will all have something in common.

You’re going to want to keep track of the synchronization status for each locally modified
record. The easiest way to do this is to include a property on your Core Data entities that can
represent three states:

• synchronized
• pending synchronization
• not synchronized

An integer should work fine for this. We can map this integer to an enum in Swi� to have
convenient access to the object’s synchronization state.

Next, we should decide howwe deal with merging our local data with the remote data. In the
previous section, we could always assume that an incoming object contained the most up to
date information. A�er all, there was no way for a user to locally modify records. Because of
this, we could use Core Data’s built-in merge conflict handling to override any properties in

Donny Wals 212

Practical Core Data

the Core Data store with the in-memory values in case of a uniqueness conflict. We won’t be
able to use this approach in a two-way synchronization since the appropriate merge strategy
depends on whether the managed object is synchronized to the server or not.

Alternatively, you could make sure that you always synchronize your local changes to the
server first so the server can merge your local data with its data. A�er sending all of your local
modifications to the server you would be able to fetch data from the remote and be assured
that all data that you receive from the remote is up-to-date.

As is o�en the case in programming, the best solution for your app depends onmany factors.
And in this case, your solution will probably depend on what’s best for your server team too.
When you’re working on features like this, I highly recommend that you sit down with your
server team and talk through a synchronization strategy that will be manageable in your app,
and hopefully works well for the team that works on the server.

The synchronization strategy that I’d like to show you in this section will work as follows:

• Changes will be batched and processed every 20 seconds
• We’ll use a find or insert approach to update managed objects
• Local changes will always trump remote changes if the local object is not fully synchro-
nized

• For convenience, we’ll assume that the server respondswith the latest version of objects
we just synchronized to account for any merging that took place on the server

• Managed objects will have a synchronized and updatedAt field that can be used
by the server to determine when an object was last modified

This is quite an extensive list of features and rules that we’ll take into account for this two-
way sync strategy. In my experience, a sync strategy that does everything listed here should
provide a solid experience and account for some of the more complex scenarios you’ll run
into. Depending on your needs you could potentially use a much simpler strategy. This, again,
depends highly on your app and requirements from the server team. The solution I’m about
to show you is merely a suggestion based on previous experiences.

Implementing your synchronization strategy

To implement our synchronization strategy, we’ll need to define a new Synchronizer
object that will handle the scheduling and processing of the whole synchronization process.

Donny Wals 213

Practical Core Data

We’ll also need to implement a new data importing strategy to import data and ensure that
we don’t overwrite locally modified data, and we’ll also need a fetch or insert mechanism for
managed objects.

We’ll work our way in from the edges of the synchronization feature. Thismeans that we’ll add
new fields to PointOfInterest first. Then we’ll implement a find or insert mechanism,
and then we’ll implement a new data importer and lastly, we’ll create the Synchronizer
object that handles synchronization of locally modified items.

Since the change is fairly straightforward, here are the new properties that I’ve added to
PointOfInterest:

// sync related properties
@NSManaged public var synchronized: Int
@NSManaged public var updatedAt: Date

public var synchronizationState: SynchronizationState {
get {

SynchronizationState(rawValue: synchronized) ?? .notSynchronized
}

set {
synchronized = newValue.rawValue

}
}

Both of the newmanaged properties are non-optional. The synchronized property will
default to 0 which means that the object is not yet synchronized. I added a convenience
property calledsynchronizationState. Its type is anenumand its value isbasedentirely
upon the synchronized property which is an Int.

Here’s what SynchronizationState looks like:

public enum SynchronizationState: Int {
case notSynchronized = 0, synchronizationPending, synchronized

}

Donny Wals 214

Practical Core Data

It’s a very simple enum and its only purpose is to make our code a little bit cleaner.

When you add new properties to your managed object, don’t forget to update your
init(from:)method to decode any properties that you expect to receive from the server.
In this case, the updatedAt property should be added here.

Adding a find or insertmechanism for yourmanaged objects A find or insertmechanism
is something that I almost always implement in any Core Data application I work on. It
allows me to fetch an existing managed object or create a new one in just one line of code. A
mechanism like this will usually work alongside amerge policy for cases like the one we’re
encountering now. Sometimes you’ll want to overwrite your local copy with new data, other
times youwant to keep the existing data. Other times youmight want to overwrite some parts
of a record but keep others intact.

Nomatter what your reason, find or insert is a useful tool in your Core Data toolbox.

A find or replace mechanism requires that your managed objects can be uniquely identified.
Luckily, the data model we’re using in this chapter has a PointOfInterest class that uses
anidentifier property as its unique identifier. We’ll add a staticmethod toPointOfIn-
terest that will take a UUID and return either an existing PointOfInterest or insert a
new one into our Core Data store:

static func findOrInsert(using identifier: UUID, in context:
NSManagedObjectContext) -> PointOfInterest {↪→

let request = NSFetchRequest<PointOfInterest>(entityName:
"PointOfInterest")↪→

request.predicate = NSPredicate(format: "%K == %@",

#keyPath(PointOfInterest.identifier),↪→

identifier as NSUUID)

if let poi = try? context.fetch(request).first {
return poi

} else {
let poi = PointOfInterest(context: context)

Donny Wals 215

Practical Core Data

return poi
}

}

This method should speak for itself by now. We create a fetch request to find points of in-
terest that match the received identifier. Since this request should only return one value
(identifier has a unique constraint a�er all) we don’t have to set a fetch limit to make
sure we only fetch one item.

However, we’ll still receive an array from fetch(_:) so we use .first to grab the first
result if one exists and then we return it.

If no existing record is found we insert a new one and return it.

This pattern is simple to implement and it’ll prove to be quite e�ective in a moment.

Updating the DataImporter object We’ll add a new import method to DataImporter
that takes raw data, converts this data to an array, and then processes it for importing.

Let’s jump right into the implementation for this newmethod:

public func importPointsOfInterestUsingData(_ data: Data) {
let entries = try! JSONSerialization.jsonObject(with: data,

options: []) as! [[String: Any]]↪→

for entry in entries {
let uuid = UUID(uuidString: entry["identifier"] as! String)!
let poi = PointOfInterest.findOrInsert(using: uuid, in:

self.context)↪→

if poi.objectID.isTemporaryID || poi.synchronizationState ==
.synchronized {↪→

poi.identifier = uuid
poi.address = entry["address"] as! String
poi.city = entry["city"] as! String
poi.country = entry["country"] as! String
poi.information = entry["information"] as! String
poi.latitude = entry["latitude"] as! Float

Donny Wals 216

Practical Core Data

poi.longitude = entry["longitude"] as! Float
poi.name = entry["name"] as! String
poi.synchronizationState = .synchronized

} else {
// We have local changes, don't update

}
}

}

A�er converting the raw data to an array of type [[String: Any]] we loop over all en-
tries that need to be imported. I extract a UUID from the entry and pass it to findOrIn-
sert(using:in:) to obtain a PointOfInterest. Next, I check whether the objec-
tID for this object is temporary. If it is, I know that this object is new; it doesn’t have a
permanent objectID yet because it’s never been saved. It’s safe to update a new object
with data from the remote since I don’t have a local unsynchronized copy for this object.

Alternatively, if the point of interest’ssynchronizationState issynchronized I know
that it doesn’t have any local modifications. This means that we can safely update the local
data with data from the remote. I’m not using a JSONDecoder to populate the managed
object’s fields here because its initialization is done in findOrInsert(using:in:). Be-
cause of this, we have to grab values from the dictionary that’s extracted by JSONSerial-
ization

If the object isn’t new and its synchronizationState is not synchronizedwe know
that we’re dealing with an existing point of interest that has local modifications so we don’t
want to update it with remote data just yet.

We’ll want to synchronize the object to the remote first, and then update the local object with
the server’s response.

In this section, I assume that your server will respond to a POST request that you make to
synchronize data with the most up to date version of each object that was included in the
POST.

Speaking of making a POST request, there’s one last change that needs to bemade to both
PointOfInterest and Category. We need to conform them both to the Encodable
protocol sowecanconvert instancesof theseobjects toData for ourupload. Update thedecla-

Donny Wals 217

Practical Core Data

ration forPointOfInterest by replacingDecodablewithCodable becauseCodable
is the combination of Decodable and Encodable:

class PointOfInterest: NSManagedObject, Codable

Do the same for Category.

Next, add the following implementation for encode(to:) to PointOfInterest:

func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)

try container.encode(address, forKey: .address)
try container.encode(city, forKey: .city)
try container.encode(country, forKey: .country)
try container.encode(identifier, forKey: .identifier)
try container.encode(information, forKey: .information)
try container.encode(latitude, forKey: .latitude)
try container.encode(longitude, forKey: .longitude)
try container.encode(name, forKey: .name)
try container.encode(updatedAt, forKey: .updatedAt)

try container.encode(category, forKey: .category)
}

And add the following to Category:

func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)

try container.encode(name, forKey: .name)
}

This will allow us to use a JSONEncoder to transform unsynchronized points of interest to
Data later.

Donny Wals 218

Practical Core Data

Implementing the Synchronizer object So far we have accounted for the following fea-
tures that I mentioned earlier in this section:

• We’ll use a find or insert approach to update managed objects
• Local changes will always trump remote changes if the local object is not fully synchro-
nized

• Managed objects will have an updatedAt and a synchronized field that can be
used by the server to determine when an object was last modified

This means that we have only twomore boxes to check:

• Changes will be batched and processed every 20 seconds
• For convenience, we’ll assume that the server respondswith the latest version of objects
we just synchronized to account for any merging that took place on the server

Before I show you the synchronizer itself, let’s take a little detour into the realm of network-
ing.

I’m not going to advocate for a specific app architecture but I’m sure that we can all agree that
separation of concerns in a program is a good idea. For this reason, I highly recommend that
you don’t put networking code in your Synchronizer class. Instead, it’s better to inject a
Networking object.

It’s entirely up to youwhat your networking stack looks like so take the Networking object
you’re about to see as an inspiration for creating your own. I merely came up with an object
that’s as simple as possible while still providing enough functionality to be useful. The code
you’re about to see is the complete implementation for my Networking class. I’ll go over it
step by step so it’s okay if you don’t grasp the whole thing all at one:

public class Networking {
public init() {
// 1
URLProtocol.registerClass(FakeServer.self)

}

func uploadPointsOfInterest(_ pointsOfInterest: [PointOfInterest])
-> AnyPublisher<(data: Data, response: URLResponse), URLError>
{

↪→

↪→

Donny Wals 219

Practical Core Data

// 2
guard let context = pointsOfInterest.first?.managedObjectContext
else {↪→

fatalError("uploadPointsOfInterest should be called with an
array of pois that exist in a managed object context")↪→

}

// 3
context.performAndWait {

for poi in pointsOfInterest {
poi.synchronizationState = .synchronizationPending

}

try! context.save()
}

// 4
let encoder = JSONEncoder()
let data = try! encoder.encode(pointsOfInterest)

// 5
let url = URL(string: "http://my-server.com/upload")!
var request = URLRequest(url: url)
request.httpMethod = "POST"
request.httpBody = data

// 6
FakeServer.preparedData = data

// 7
return URLSession.shared.dataTaskPublisher(for: request)

.eraseToAnyPublisher()
}

}

Donny Wals 220

Practical Core Data

In the very first step of this code, I do something that youmay have never seen before:

URLProtocol.registerClass(FakeServer.self)

This line of code registers a class that I’ll show you a�er I explain my Networking object. By
registering aFakeServer class onURLProtocol I can take full control over what happens
when I attempt to POST data to a server. This means that I can mimic a server response in the
app, making it very easy to test the synchronizer.

For production code, you shouldn’t do this since you’d be intercepting all of the network calls
to your server, but for a test URLProtocol is great. This is another feature that’s not Core
Data related but still a cool feature that I wanted to show you. More on URLProtocol later.
Let’s move on to step two in the Networking class.

guard let context = pointsOfInterest.first?.managedObjectContext else
{↪→

fatalError("uploadPointsOfInterest should be called with an array
of pois that exist in a managed object context")↪→

}

In this part of the code, I grab amanaged object context from the first point of interest that
we’re synchronizing. Since all of my points of interest should be fetched using a managed
object context I expect that every point of interest that we’re about to synchronize has a
managed object context that can be used to perform some requests.

context.performAndWait {
for poi in pointsOfInterest {

poi.synchronizationState = .synchronizationPending
}

try! context.save()
}

Sincewe’re about to sync the received objects up to our server, we should update their current
synchronization state to be synchronizationPending. We can update the UI to reflect

Donny Wals 221

Practical Core Data

this if needed, and this makes sure that these records are not picked up if we start another
sync while this one’s still in progress (for example due to a lack of internet connectivity).

let encoder = JSONEncoder()
let data = try! encoder.encode(pointsOfInterest)

This fourth step speaks for itself.

let url = URL(string: "https://my-server.com/upload")!
var request = URLRequest(url: url)
request.httpMethod = "POST"
request.httpBody = data

The encoded points of interest are used as httpBody on a POST request. Again, this pretty
much speaks for itself.

FakeServer.preparedData = data

In the sixth step, I assign some data that I’ll use as a responsewhenmyFakeServer is asked
to process the URLRequest that was configured in the previous step.

return urlSession.dataTaskPublisher(for: request)
.eraseToAnyPublisher()

Finally, a�er all this setup I return a Combine data task publisher.

Tip: If you’re not familiar with Combine I highly recommend going through some of the
free Combine posts onmy website, or check out my Practical Combine book.

Before wemove on to the synchronizer, let’s take a very quick look at FakeServer to under-
stand what it does:

Donny Wals 222

https://www.donnywals.com/category/combine/
https://practicalcombine.com

Practical Core Data

class FakeServer: URLProtocol {
static var preparedData: Data!

override class func canInit(with task: URLSessionTask) -> Bool {
return task.currentRequest?.url?.absoluteString ==

"https://my-server.com/upload"↪→

}

override class func canonicalRequest(for request: URLRequest) ->
URLRequest {↪→

return request
}

override func startLoading() {
DispatchQueue.global().async {

self.client?.urlProtocol(self, didLoad: Self.preparedData)
self.client?.urlProtocol(self, didReceive: URLResponse(),

cacheStoragePolicy: .notAllowed)↪→

self.client?.urlProtocolDidFinishLoading(self)
}

}

override func stopLoading() {

}
}

Because I registered FakeServer on the URLProtocol object, its canInit(with:)
method will be called for every network request that the app will make. I check whether
the task’s URL is my dummy upload URL, and if it is I return true to indicate that I want
FakeServer to handle the request instead of letting my URLSession handle it.

I’m then asked to provide a canonical request for the URLRequest that we’re about to load.
I simply return the task that was passed as an argument here. Implementing this method is
mandatory but you don’t have to do anything fancy.

Donny Wals 223

Practical Core Data

Next, the startLoading()method is called. This is where we’re expected to handle the
request. When your data is ready, youmust pass it to the client object that’s inherited from
URLProtocol by calling urlProtocol(_:didLoad:). Once all data is loaded you call
urlProtocol(_:didReceive:cacheStoragePolicy:) to pass a URLResponse
object to the client. Lastly, you call urlProtocolDidFinishLoading(_:). This
completes the fake network call and will usually invoke your data task’s completion handler.
If you’re using Combine this means that your data task publisher will emit its output and
complete.

I have an empty implementation for stopLoading() because I don’t support canceling my
fake network request.

A customURLProtocol can be super useful when youwant to test some networking related
functionality in your app without needing a server. It’s perfect for testing something like our
synchronization strategy.

Anyway, I digress. Back to the topic of synchronizing!

The following code is an outline for the synchronizer:

public class Synchronizer {
let context: NSManagedObjectContext
private var timerCancellable: AnyCancellable?

let networking: Networking
let importer: DataImporter

public init(context: NSManagedObjectContext, networking: Networking
= .init()) {↪→

self.context = context
self.networking = networking
self.importer = DataImporter(context: context)

}

public func start() {
guard timerCancellable == nil else {

return
}

Donny Wals 224

Practical Core Data

timerCancellable = Timer.publish(every: 20, on: .current, in:
.default)↪→

.autoconnect()
/* ... we'll do a bunch of work here */
.sink(receiveValue: { _ in

print("completed a sync call")
})

}
}

My Synchronizer requires a managed object context and a networking object to work.
The context is to be able to fetch unsynchronized objects and the networking object is needed
to perform the actual sync.

I’ll also be using a Combine Timer so I need to store the cancellable that I receive when I
subscribe to this Timer.

The Synchronizerwill also use the DataImporter to import the points of interest that
the (fake) server returns in response to our synchronization requests.

I won’t go into the details of Combine and how the Timer publisher works. The most impor-
tant thing to understand is that the timer will output a Date every 20 seconds. We can map,
flatMap, and more on the Timer to transform this Date into other things. As you’ll see in
a moment, this is perfect for our use case.

The first step in our synchronization pipeline is to respond to the emission of a Date value
by retrieving all unsynchronized points of interest in map and returning them. Essentially
replacing the Datewith [PointOfInterest] so we can apply a new operator a�er the
map.

Here’s what this looks like:

timerCancellable = Timer.publish(every: 10, on: .current, in:
.default)↪→

.autoconnect()

.map({ (_) -> [PointOfInterest] in

Donny Wals 225

Practical Core Data

let request = PointOfInterest.unsyncedFetchRequest
let unsynced: [PointOfInterest] = try!

self.context.fetch(request)↪→

return unsynced
})
/* ... we'll do a bunch of work here */
.sink(receiveValue: { _ in

print("completed a sync call")
})

I added a convenience property on PointOfInterest to create a fetch request that has a
predicate to select all unsynchronized points of interest.

The next step is to add a flatMap that takes the unsynchronized points of interest and
uploads them using the networking object.

timerCancellable = Timer.publish(every: 10, on: .current, in:
.default)↪→

.autoconnect()

.map({ (_) -> [PointOfInterest] in
let request = PointOfInterest.unsyncedFetchRequest
let unsynced: [PointOfInterest] = try!

self.context.fetch(request)↪→

return unsynced
})
.flatMap({ unsynced -> AnyPublisher<Void, Never> in

guard !unsynced.isEmpty else {
return Empty().eraseToAnyPublisher()

}

return self.networking.uploadPointsOfInterest(unsynced)
/* We'll do more work here... */

})
.sink(receiveCompletion: { _ in }, receiveValue: { _ in
print("done!")

})

Donny Wals 226

Practical Core Data

The flatMap I just added is used to return a new Combine publisher. The output of this
new publisher is used as the input for the sink that’s at the end. Since we don’t want to do
anything with the output of our work (you’ll see why in a moment), the flatMap closure
returns a publisher of type AnyPublisher<Void, Never>. In other words, we’ll publish
empty values and the publisher never throws an error.

Inside of the flatMap I check whether we have any managed objects to process. If we don’t,
I return an Empty publisher. This publisher doesn’t emit any values and simply completes its
work without doing anything.

If there are items that need to be synchronized, I pass them tomy networking object.

Since the networking object’s uploadPointsOfInterest(_:) returns a publisher that
outputs(data: Data, response: URLResponse), I will need todo someprocessing
on the emitted Data to import it into my data store and set each synchronized record’s
synchronizationState to synchronized.

The first thing I want to add here is the ability to update the synchronization state for the
synchronized objects:

timerCancellable = Timer.publish(every: 10, on: .current, in:
.default)↪→

.autoconnect()

.map({ (_) -> [PointOfInterest] in
let request = PointOfInterest.unsyncedFetchRequest
let unsynced: [PointOfInterest] = try!

self.context.fetch(request)↪→

return unsynced
})
.flatMap({ unsynced -> AnyPublisher<Void, Never> in

guard !unsynced.isEmpty else {
return Empty().eraseToAnyPublisher()

}

return self.networking.uploadPointsOfInterest(unsynced)

Donny Wals 227

Practical Core Data

.handleEvents(receiveOutput: { output in
self.context.performAndWait {
for poi in unsynced {

poi.synchronizationState = .synchronized
}

try! self.context.save()

self.importer.importPointsOfInterestUsingData(output.data)
}

}, receiveCompletion: { completion in
if case .failure = completion {

self.context.performAndWait {
for poi in unsynced {
poi.synchronizationState = .notSynchronized

}

try! self.context.save()
}

}
})
// we're not quite there yet

})
.sink(receiveCompletion: { _ in }, receiveValue: { _ in

print("done!")
})

Note that I added a handleEvents operator and passed it a receiveOutput and re-
ceiveCompletion closure. These closures are called when the data task publisher emits
data andwhen the task completes. When a task outputs data, wewant to use that opportunity
to set the sync status for all previously unsynchronized points of interest to synchronized.
We also want to pass the data that’s part of the data task’s output to our importer so it can
update our local copies of the synchronized objects with new data.

When the data task publisher completes, it can either do so successfully or with an error. When

Donny Wals 228

Practical Core Data

the task completes successfully thereceiveOutput closure was called and there’s nowork
for us to do. All points of interest are marked as synchronized and they have been updated
with the latest data from our server.

However, if the network call fails for any reason, we’ll want to reset the synchronization state
to be unsynchronized. I do this by checking the completion object that’s passed tomy
receiveCompletion closure and updating my points of interest if the completion is
equal to failure.

Since handleEvent doesn’t modify the output from the data task publisher but merely
responds to it, we still have somemodifications to make. We’ll want to transform the data
task publisher’s output to Void and catch any errors so we return a publisher that never fails
from our flatMap.

Here’swhat the full pipeline for the networking publisher looks like. The following code should
be inside the flatMap from before. I omitted the surrounding code to prevent pasting the
same code over and over again.

return self.networking.uploadPointsOfInterest(unsynced)
.handleEvents(receiveOutput: { output in

self.context.performAndWait {
for poi in unsynced {
print("updating sync status for poi \(poi.identifier)")
poi.synchronizationState = .synchronized

}

try! self.context.save()

self.importer.importPointsOfInterestUsingData(output.data)
}

}, receiveCompletion: { completion in
if case .failure = completion {

self.context.performAndWait {
for poi in unsynced {

poi.synchronizationState = .notSynchronized
}

Donny Wals 229

Practical Core Data

try! self.context.save()
}

}
})
.map({ _ in return () })
.catch({ _ in Empty() })
.eraseToAnyPublisher()

The last threeoperators in this chain replace thedata task’s outputwithVoid, replaces any fail-
ures with Empty() and the resulting publisher is erased to be an AnyPublisher<Void,
Never>.
Tip (repeated): If you’re not familiar with Combine I highly recommend going through
some of the free Combine posts on my website, or check out my Practical Combine
book.

With this code in place, the synchronizer should be good to go. You can create an instance of
the Synchronizer object in a convenient place like AppDelegate, your App struct, or
even in your StorageProvider and call start() on it. This will start the timer and the
synchronizer will fetch and upload any unsynchronized points of interest to the server.

Synchronization strategies are not easy or straightforward but their implementations can be
simple enough. In the example that I’ve shown you in this section, we took five requirements
that I believe any good synchronization strategy will implement in some way and I showed
you how to implement these requirements with a relatively small amount of code.

I think you’ll find that when you get to work on a synchronization strategy of your own you’ll
find that it’s essential to think through your strategy before you start coding. This will help
you find the shortest and simplest code path for the strategy that fits your needs.

With the examples from this chapter, you should hopefully have gained some inspiration and
insight in to what a basic strategy looks like.

Donny Wals 230

https://www.donnywals.com/category/combine/
https://practicalcombine.com

Practical Core Data

In Summary
In this chapter, I showed you how you can set up your Core Data store to build a fantastic
o�line experience for your users.

First, you learned how you can load data from a server and store it locally to save your user’s
data and avoid having to go to the network every time. You learned how to set a merge policy
on your managed object context, and you saw how you can add uniqueness constraints on
your managed objects. I showed you how you canmake your managed objects conform to
Decodable for a super convenient import mechanism, and I showed you how you can use a
batch insert request to greatly improve your import performance if you’re importing a data
set that doesn’t involve relationships.

A�er that, we took it up a notch and you learned about two-way synchronization where
you sync local modifications back up to the server. I explained how you can determine an
appropriate synchronization strategy, and then I showed you how to implement a sample
strategy. In the process, you learned about faking a network response with URLProtocol,
and you even saw a little bit of Combine code.

Users have come to expect seamless experiences on their devices, and it only makes sense to
them that data from one device will magically appear on their other devices. Facilitating this
isn’t an easy task. This chapter is one of the longest in the book, and I’m fully aware that it
still has gaps. The reason for this isn’t that I didn’t want to write about it. The reason is that
there’s simply toomuch to cover in a custom solution, especially if the back-end for every app
might be completely di�erent which will have a profound impact on the code that you write
in your app.

Luckily, iOS can save us a lot of headaches with iCloud. In the next chapter, I will show you
how you can set your app up for iCloud-based synchronization of your Core Data store on all
of your user’s devices with NSPersistentCloudKitContainer.

Donny Wals 231

Practical Core Data

Chapter 8 - Synchronizing your store with
CloudKit
The previous chapter was an introduction to synchronizing your local Core Data store with a
remote data source. You learned that synchronizing data can get complicated quickly, and
that the perfect solution to synchronizing data depends heavily on your back-end system.

Building andmaintaining a back-end service for your app can be a complex process that takes
up precious development time, and requires ongoing maintenance and support once it’s
deployed. Luckily, Apple’s CloudKit platform integrates beautifully with Core Data since the
introduction of NSPersistentCloudKitContainer in iOS 13.

In this chapter, you will learn how you can add CloudKit synchronization to your Core Data
applications. You will learn how you can optimize your datamodel for CloudKit, and how data
from Core Data is stored in CloudKit. I will also explain how you can add CloudKit functionality
to an existing app, and how you can synchronize existing data from your store to CloudKit.

This chapter will cover the following topics:

• Preparing your application for CloudKit synchronization
• Exploring the iCloud dashboard
• Configuring which entities are synchronized using model configurations
• Adding data to a public CloudKit store
• Understanding CloudKit’s conflict resolution
• Understanding CloudKit’s migration limitations

By the end of this chapter you will have a solid understanding of how CloudKit and Core Data
work together to provide a fantastic experience for your users. Note that this chapter is not
a comprehensive guide to working with CloudKit as a separate technology. You can build
amazing applications on top of CloudKit without Core Data but this chapter will not explain
how to do this. In this chapter, you will learn just enough about CloudKit to use it with Core
Data.

** Important:** If you’re familiar with iOS 15’s feature set, you’ll know that iOS 15 includes
support for record sharing with other iCloud users. Unfortunately I have not been able to
get this feature to work correctly in all cases that I’d like to cover. Specifically participant

Donny Wals 232

Practical Core Data

management is an issue. I will continue investigating this feature and thebookwill receive
a free update once I figure this feature out. Until then, I have omitted the record sharing
section from this chapter.

Preparing your application for CloudKit
synchronization
Enabling CloudKit synchronization is, for the most part, a six-step process:

1. Switch to using an NSPersistentCloudKitContainer
2. Enable persistent history tracking
3. Add the CloudKit capability to your project
4. Create a CloudKit container for your app
5. Add the required background capabilities
6. Mark your model configuration to be used with CloudKit

If these steps sound too good to be true, you’re about to be surprised. At its very core, using
CloudKit in your project is really a very straightforward process. Of course, as we dive deeper
into the integration with CloudKit you’ll find that there are some caveats to be aware of but
overall, the setup doesn’t have to be complicated.

When you create a new project in Xcode, and you check theUse Core Data checkbox you have
the option to synchronize your database with CloudKit. If you check this checkbox, steps 1, 2,
and 5 will be done for you by Xcode. Steps 3, 4, and 6 will still need to be done by you.

Donny Wals 233

Practical Core Data

Figure 30: The new project dialog

Throughout this chapter, I will assume that you started a projectwithout CloudKit synchro-
nization. By adding it from scratch you’ll understand that Xcode does not do anything you
can’t do when it sets up your project.

Let’s go over the steps I just mentioned one by one.

Updating your code with NSPersistentCloudKitContainer

First, you’ll need to swap your NSPersistentContainer for an NSPersistent-
CloudKitContainer. This can be as simple as changing a line that looks like this:

Donny Wals 234

Practical Core Data

self.persistentContainer = NSPersistentContainer(name: "Chapter8")

To one that looks like this:

self.persistentContainer = NSPersistentCloudKitContainer(name:
"Chapter8")↪→

The sample code in the code bundle for this chapter uses a framework to encapsulate Core
Data which makes it easier for me to use Core Data in a Swi�UI example as well as UIKit. To
make sure my app looks for my Core Data model in the correct place (the framework bundle
rather than the app bundle) I use a subclass of NSPersistentContainer:

public class PersistentContainer: NSPersistentContainer {}

To migrate to NSPersistentCloudKitContainer all I have to do is inherit from
NSPersistentCloudKitContainer:

public class PersistentContainer: NSPersistentCloudKitContainer {}

The idea is the same, you build on top of NSPersistentCloudKitContainerwhen you
want to synchronize your Core Data store to CloudKit.

And just like that, step one is done. You’re now using a CloudKit enabled version of NSPer-
sistentContainer. This container will, once everything is set up, manage all communi-
cation with CloudKit. It will keep your data in sync with CloudKit without any extra action on
your part.

This means that the persistent CloudKit container will upload any changes youmake locally
to the remote store, retrieve new and updated data automatically as needed, and more.
You’ll learn more details about what the persistent CloudKit container does throughout this
chapter.

A�er switching to NSPersistentCloudKitContainer, you need to enable persistent
history tracking. You first learned about persistent history tracking in Chapter 6 - Sharing a
Core Data store with apps and extensions.

Donny Wals 235

Practical Core Data

You don’t have to implement a custom persistent history tracker when using NSPersis-
tentCloudKitContainer. Your NSPersistentCloudKitContainer performs his-
tory tracking on its own so it can properly synchronize your data store as needed.

To enable persistent history tracking you only need to add this line before loading your persis-
tent stores:

persistentContainer.persistentStoreDescriptions.first!.setOption(true
as NSNumber, forKey: NSPersistentHistoryTrackingKey)↪→

A�er doing this, you need to add the CloudKit capability to your app. For this to work, you
must have a paid Apple Developer programmembership because CloudKit synchronization
requires CloudKit and Push Notifications capabilities. Both of these are not available with a
free membership.

Updating your project’s capabilities

To add the CloudKit capability to your project, go to the project settings for your app, and
select the Signing & Capabilities tab. Click the +Capability button in the top le� corner
of the settings area and search for iCloud. A�er adding the iCloud capability, you need to
select CloudKit under services and add a container for your app. Click the ++ button in the
Containers area and create a container for your app.

Figure 31: Screenshot of what the iCloud section should look like

Donny Wals 236

Practical Core Data

Note that a�er going through this step, Xcode will have added the Push Notifications capa-
bility to your app automatically.

CloudKit synchronization uses silent push notifications to inform your app about any changes
that may have occurred in the remote store. Your NSPersistentCloudKitContainer
will automatically set itself up to receive and respond to these notifications by fetching and
importing any changes that have occurred in the remote store.

For these notifications to work their magic, we need to add onemore capability to the app,
the Background Modes capability. Use the + Capability button again to find and add Back-
ground Modes. You only need to select the Remote notificationsmode.

Figure 32: Screenshot of the Background Modes that should be enabled

Your app is now fully set up to utilize CloudKit synchronization. All that’s le� is to configure
your Core Data model to be used with CloudKit.

To do this, open your .xcdatamodel file and select the Defaultmodel configuration in the
model editor.

With this configuration selected, take a look at the Data Model Inspector and ensure that the
Used with CloudKit checkbox is selected.

Donny Wals 237

Practical Core Data

Figure 33: The Used with CloudKit checkbox should be selected

A�er going through these steps, you can launch your application. Note that you should use a
real device to test your CloudKit enabled application. The iOS simulator does not support all
of the required features to make CloudKit sync work. The simulator will synchronize on app
launch, but it will not pull in remote changes while the app is running.

This canmake testing your CloudKit integration somewhat tedious since you’ll need to have a
second device to truly observe the power of using CloudKit in your app.

Seeing your persistent CloudKit container in action

When you launch your CloudKit enabled app for the first time, you’ll find that a ton of infor-
mation is immediately logged to the console. You can take a look at this information if you
want but unless there’s an error or you’re looking for something specific, you can ignore these
logs. They simply tell you that your app is connected to CloudKit and that it went through all
kinds of work to set up your app and the CloudKit store to work together.

The sample application that I’ve included in this chapter’s code bundle is a simple example of
a to-do list style application. While this format is certainly one of the most common examples
out there for anything that covers persistent storage, it’s an e�ective way to demonstrate
persistence and add a relationship or two in the process.

This chapter’s sample application is a very bare-bones version of a to-do list that can help
youmanage your household tasks. I o�en forget when I vacuumed last, when I replacedmy
kitchen towels, andmore. This app helps you add a task, set an interval for how o�en the task
should be done, and allows you to mark the task as done. The app also keeps a history of

Donny Wals 238

Practical Core Data

when you did things so you can easily see when you did a task last, and when the task is due
for the next time.

Adding new tasks to this Core Data store is done using the following code:

func addTask(name: String, description: String,
nextDueDate: Date, frequency: Int,
frequencyType: HouseHoldTask.FrequencyType) {

let context = persistentContainer.viewContext

context.perform {
let task = HouseHoldTask(context: context)
task.name = name
task.taskDescription = description
task.nextDueDate = nextDueDate
task.frequency = Int64(frequency)
task.frequencyType = Int64(frequencyType.rawValue)

do {
try context.save()

} catch {
print("Something went wrong: \(error)")
context.rollback()

}
}

}

Note that there is nothing special about this code. You’ve already seen code like this several
times because it’s just a standard approach to adding a new item to a Core Data store.

But when I call try context.save(), something special happens.

The persistent CloudKit container is set up so that any time wemake a change to our Core
Data store, this change is uploaded to CloudKit as soon as possible.

When you save a new object to your Core Data store, NSPersistentCloudKitCon-
tainer starts a sync and logs a whole bunch of information. The following lines indicate that
the persistent container observed your save operation, and will initiate a CloudKit sync:

Donny Wals 239

Practical Core Data

CoreData: debug: CoreData+CloudKit: -[NSCloudKitMirroringDelegate
managedObjectContextSaved:](2092): <NSCloudKitMirroringDelegate:
0x283c104e0>: Observed context save:
<NSPersistentStoreCoordinator: 0x282c158f0> -
<NSManagedObjectContext: 0x283c11520>

↪→

↪→

↪→

↪→

CoreData: CloudKit: CoreData+CloudKit: -[NSCloudKitMirroringDelegate
_scheduleAutomatedExportWithLa-
bel:activity:completionHandler:](2570):
<NSCloudKitMirroringDelegate: 0x283c104e0> - Beginning automated
export - ExportActivity:

↪→

↪→

↪→

↪→

Again, you’re free to browse all the logged information but unless you’re looking for something
specific, there’s not a lot of interesting information to see. The logs are certainly not as
interesting as grabbing a second iOS device to see your synced data magically appear.

Every time you make a local change to your data store, NSPersistentCloudKitCon-
tainerwill notice this change through persistent history tracking, and it will synchronize
this change to the CloudKit store. Whether it’s deleting data, inserting new data, or making
changes to existing data, your persistent CloudKit container will handle the synchronization.

The same is true for changes that were made by other devices. Every time something changes
in CloudKit, all of your user’s devices that have your app installed are notified automatically
using a silent push notification. Your persistent CloudKit container observes these silent push
notifications and knows when to issue a CloudKit request to retrieve the latest modifications
from the CloudKit store. This includes information about deleted andmodified records.

Behind the scenes, this all works throughmechanisms like CKSubscriptionwhich tracks
changes for a particular CKQuery. These objects are available to you as a developer, which
means that you could replicate the features provided by the persistent CloudKit container if
you wanted to. I wouldn’t recommend doing this though. Persistent CloudKit container works
well and it abstracts a ton of work away from you as a developer.

I don’t want to go into all the nitty-gritty details of CloudKit, CKQuery, CKSubscription,
and other components that are involved in your persistent CloudKit container. If you want to
learn more, I highly recommend that you take a look at Apple’s CloudKit documentation.

I do, however, want to point out some rules and limitations to keep in mind when youmodel
your entities to be used with CloudKit.

Donny Wals 240

https://developer.apple.com/documentation/cloudkit

Practical Core Data

Modeling your entities for CloudKit

When you start using NSPersistentCloudKitContainer, your data modeling ap-
proach has to adapt to be compatible with CloudKit. For example, all relationships in CloudKit
have to be optional. This means that you can no longer rely on Core Data to automatically
validate your relationships for you if they are technically non-optional.

It’s also not allowed for you to have properties defined on your model that are non-optional
without a default value. This means that you should either come up with sensible defaults for
your properties, or that you’ll have to mark them as optional in the model editor.

CloudKit also does not support unique constraints. When you define a unique constraint on
your model, Xcode will not compile your project. To enforce uniqueness, you can use the
findOrInsert approach that I’ve shown you in the previous chapter.

Lastly, CloudKit does not support theDeny delete rule on relationships. Thismeans that you’ll
need to be extra careful when deleting records to avoid orphaning data.

While these limitations can’t be worked around, you can implement custom validation steps
on yourmanaged objects to enforce some of the rules that Core Data can no longer validate on
your behalf. For example, you could use the following code to ensure that any HouseHold-
Task that is saved has its name set to a non-empty string even if the property was marked
optional in the model editor:

extension HouseHoldTask {
enum ValidationError: Error {

case invalidName(String)
}

public override func validateForInsert() throws {
try super.validateForInsert()

guard let name = name, !name.isEmpty else {
throw ValidationError.invalidName("Name should be a non-empty

string")↪→

}
}

Donny Wals 241

Practical Core Data

public override func validateForUpdate() throws {
try super.validateForUpdate()

guard let name = name, !name.isEmpty else {
throw ValidationError.invalidName("Name should be a non-empty

string")↪→

}
}

}

EveryNSManagedObject subclass can override thevalidateForInsert,validate-
ForUpdate, and validateForDeletemethods to perform custommodel validation. In
this case, I’m only validating a single property. If you’d like you can evaluate several properties
andmake sure that every required property is set, even if you’ve marked them as optional in
the model editor.

Implementing custom validation like this will help you ensure that your data model’s integrity
is as protected as possible, even if Core Data and CloudKit can’t help you.

Any data that is synced between your application and the remote CloudKit store is stored in
CloudKit’s private storage. Thismeans that every user of your appwill have a private store that
holds their data. So no other users will have access to your user’s records and that records
will only be synced between devices where your user is logged into their iCloud account.

If your user is not signed in to iCloud on their device, their data will not be synced. Instead,
their data will only be persisted locally in their Core Data store.

CloudKit comes with a developer dashboard where you canmanage your CloudKit containers,
their schemas, andmore. You can do a lot of work in your app without ever looking at your
app’s CloudKit dashboard. In fact, you could build your entire app and not have to look at the
CloudKit dashboard once.

That said, it’s good to take a look at the dashboard anyway because you’ll need to go there
whenyouwant todeployyourdatabase schematoproduction,manuallymanageyour schema,
or if you want to clear a container and its schema entirely to have it regenerated by your
application.

Donny Wals 242

Practical Core Data

Exploring the iCloud dashboard
The easiest way to find and access your app’s CloudKit dashboard is to click the CloudKit
Dashboard button on your app’s Signing and Capabilities tab.

Figure 34: The iCloud section on the Signing and Capabilities tab has a CloudKit Dashboard
button

When you click this button you are taken to https://icloud.developer.apple.com/dashboa
rd/. This web page is the portal fromwhich you canmanage your app’s CloudKit container,
define new record types, andmodify your record types.

Note that in the previous section you were able to set up CloudKit syncing without going to
the dashboard to define your record types.

TheNSPersistentCloudKitContainer can take care of all of this on your behalf. When
you first save a record in your CloudKit enabled app, the persistent CloudKit container detects
that your CoreData schemahas not yet beenmirrored toCloudKit. It then generates aCloudKit
schema for the saved record and synchronizes it for you without any work on your end.

When you first open your CloudKit dashboard, you will see your iCloud containers on the le�
side of the window. On the right side, you’ll see the several actions that you can perform on
your container.

We won’t go over everything that you can do in the dashboard in this book. I’ll show you just
enough to help you navigate the dashboard for a CloudKit-backed Core Data application.

Donny Wals 243

https://icloud.developer.apple.com/dashboard/
https://icloud.developer.apple.com/dashboard/

Practical Core Data

Figure 35: The iCloud dashboard

In the top right corner of theDevelopment section in the dashboard for your container, there’s
a cog icon. You can use themenu that openswhen you click the cog to reset your development
environment, or to deploy your schema to production.

Donny Wals 244

Practical Core Data

Figure 36: Cogmenu on the Development container

While you’re developing your application, you’ll likely want to make some significant changes
toyourdatabase schema. You’ll probablywant todelete someentities, shu�le someproperties
around, add new entities, etc. It’s virtually impossible to correctly set up and design your
entire database on your first iteration.

For this reason, you’ll want to reset your development environment every once in awhilewhen
youmake a change to your database schema. This will wipe all data from your development
environment, and it allows your persistent CloudKit container to generate a new database
schema for your app.

I will cover CloudKit’s database migration features in the last section of this chapter. You
will learn more about Core Data’s migration mechanisms in Chapter 9 - Updating your data
model and performingmigrations. So for now, remember to delete and reinstall your appli-
cation if Core Data is giving you a hard time a�er changing your data model.

When you’re donewith a development cycle for your app, and you’re ready to deploy your app
to a production environment like TestFlight, you can hit the Deploy Schema to Production
button to copy your development schema to your CloudKit’s production environment.

Donny Wals 245

Practical Core Data

Youmust not take this action lightly.

Once you’ve deployed your schema to production, you can not delete any of your record types
or properties that were deployed to production. You can add new record types and properties
but deleting them is simply no longer possible to preserve compatibility with any existing
applications that are already on the App Store that use this container.

Only deploy your schema to production when you’re sure that you’re ready to release your
application along with its CloudKit container.

Taking a look at your CloudKit Schema

When you click on the Schema button you’ll see details about your CloudKit schema and its
record types. When you look at the schema for this chapter’s sample app there are two record
types: CD_HouseHoldTask andCD_TaskCompletion. TheCD prefixmeans that these record
types were added by our persistent CloudKit container and that they’re used by Core Data.

If you select one of these record types, you’ll see its properties:

Donny Wals 246

Practical Core Data

Figure 37: A screenshot of the properties that exist on CD_HouseHoldTask

Note that there are two sections on this screen:

• System Fields
• Custom Fields

The system fields are default fields that CloudKit automatically adds to any record that it
manages. These fields cannot be modified by you and they are not accessible through the
managed objects in your application.

The custom fields that you see are all prefixed with CD, just like the record type itself.

Note that in the Core Data model for the sample app, HouseHoldTask has a to-many rela-
tionship with TaskCompletion.

When you look at CD_HouseHoldTask in the CloudKit dashboard, this relationship is not
visible at all. If you look atCD_TaskCompletion, you’ll notice aCD_task property of type
string.

Donny Wals 247

Practical Core Data

Figure 38: The Custom Properties section for CD_TaskCompletion

This is not a mistake, your persistent CloudKit container synchronizes relationships slightly
di�erent than youmight expect.

Understanding how persistent CloudKit container handles
relationships

In Core Data, you’re used to relationships being defined as a direct relationship to another
entity. For example, a HouseHoldTask in Core Data has a completions property that’s a
Set of TaskCompletion objects. In turn, TaskCompletion has a task property that
points directly to an instance of HouseHoldTask.

Core Data uniquely identifies your managed objects using their objectID internally, and
the persistent coordinator knows how to identify objects in its underlying storage.

When you synchronize your managed objects with CloudKit, another identifier is added under
the hood; recordID. ThisrecordID is not visible to your code, and it doesn’t appear when
you look at the CloudKit dashboard. The recordID is shown in the debug output that’s
printed when you save a new object in your local database:

CoreData: warning: CoreData+CloudKit: -[PFCloudKitExporter
exportOperationFin-
ished:withSavedRecords:deletedRecordIDs:operationError:](455):
Modify records finished: (

↪→

↪→

↪→

"<CKRecord: 0x102a3f890; recordID=3E1B38E9-265D-4562-AFB5-
7F33832F79F9:(com.apple.coredata.cloudkit.zone:__defaultOwner__),
recordChangeTag=4, values={ CD_frequency=0,
CD_taskDescription=, CD_frequencyType=0,
CD_entityName=HouseHoldTask, CD_nextDueDate=2020-12-12
10:55:10 +0000, CD_name= }, recordType=CD_HouseHoldTask>"

↪→

↪→

↪→

↪→

↪→

Donny Wals 248

Practical Core Data

)

Before we look at the to-many relationship between HouseHoldTask and TaskComple-
tion, I want to show you how TaskCompletion references HouseHoldTask.

The easiest way to discover this is to insert a new TaskCompletion object into the local
Core Data store and observing themany debug logs that are printed. Somewhere in all the
messages, the following is printed:

CoreData: warning: CoreData+CloudKit: -[PFCloudKitExporter
exportOperationFin-
ished:withSavedRecords:deletedRecordIDs:operationError:](455):
Modify records finished: (

↪→

↪→

↪→

"<CKRecord: 0x102b0a6e0; recordID=3E1B38E9-265D-4562-AFB5-
7F33832F79F9:(com.apple.coredata.cloudkit.zone:__defaultOwner__),
recordChangeTag=8, values={ CD_frequency=0,
CD_taskDescription=, CD_frequencyType=0,
CD_entityName=HouseHoldTask, CD_nextDueDate=2020-12-12
10:55:10 +0000, CD_name= }, recordType=CD_HouseHoldTask>",

↪→

↪→

↪→

↪→

↪→

"<CKRecord: 0x102b0a340; recordID=CF8F3595-F2CF-4E76-A9D5-
0709DEC41BE0:(com.apple.coredata.cloudkit.zone:__defaultOwner__),
recordChangeTag=9, values={ CD_completedOn=2020-12-12
12:07:34 +0000, CD_notes=,
CD_task=3E1B38E9-265D-4562-AFB5-7F33832F79F9,
CD_entityName=TaskCompletion },
recordType=CD_TaskCompletion>"

↪→

↪→

↪→

↪→

↪→

↪→

)

Notice that both a HouseHoldTask and a TaskCompletion object are synced to the
remote CloudKit store. TheHouseHoldTask in this casewasmodified. TheTaskComple-
tion instance is new.

When you look at the CD_task property in the CKRecord that models the TaskComple-
tion, you’ll find that the value for this property is set to the recordID of the HouseHold-
Task that this completion object belongs to.

Donny Wals 249

Practical Core Data

This recordID is stored as a String, which is why in the CloudKit schema, CD_task is
also defined as a String.

CloudKit normally has the option to store relationships using a CKReference that points to
another record. So why is the relationship between a task and its completion stored using a
String identifier instead of a CKReference?

The reason is quite simple. A relationship in CloudKit can only have 750CKReferences. This
upper limitmeans that CloudKit’s references are not compatiblewith CoreData’s relationships.
A�er all, Core Data does not have such an upper limit. For this reason, Apple chose to reference
relationships by their recordID rather than a CKReference.

Because a single TaskCompletion only belongs to a single HouseHoldTask, CloudKit
does not persist the inverse of this relationship on HouseHoldTask. To find all completions
for a task, all it needs to do is find all completions that have their task set to the desired task’s
recordID. This is very similar to how you would store a to-one relationship in SQLite.

A many-to-many relationship in Core Data is modeled using Set. Each end of the relationship
has a Set that points to the other end of the relationship. Since we can’t use CKReference
in CloudKit to model this relationship, Apple implements this using a join table. Apple calls
this a Core Data Mirrored Relationship.

A join table is a table that holds the recordID for each side of the relationship, allowing you
to look up the objects on the other side of the relationship from either direction.

Luckily, details like these are transparently handled by the persistent CloudKt container. While
it’s good to understand this detail, it’s not essential to know.

There’s muchmore to see in the CloudKit dashboard and we’ll revisit it in the Adding data to
a public CloudKit store section tomake a fewmodifications to the default generated schema
but for now, you’ve seen enough of the dashboard and some of CloudKit’s inner workings.

Donny Wals 250

Practical Core Data

Configuring which entities are
synchronized usingmodel
configurations
The default setup forNSPersistentCloudKitContainer is typically to sync your entire
data model to the CloudKit store. While this is o�en exactly what you’ll want, there could be
cases where you want to divide the entities in your store so that some should only be stored
locally, and other entities should be synced between devices.

For example, if you’re building an application that tracksworkouts youmight not be interested
in synchronizing an in-progress workout to the remote store. Or maybe you don’t want to
synchronize all of the raw data that’s collected during the workout and instead do some
processing a�er the workout is done and only synchronize a summary of the workout.

I’m sure you can imagine several examples of cases where youmight not want to synchronize
all data between your Core Data store and the CloudKit store.

In this section, I will show you how you canmake use of multiplemodel configurations in Core
Data to selectively store data in a remote CloudKit store. I have already mentionedmultiple
stores in Chapter 3 - Defining entities using the model editor when I explained how you
can set up fetched properties in the Core Data model editor. As a part of separating our model
into a part that syncs and a part that is kept locally, I will show you an example of setting up a
cross-configuration relationship that uses a fetched property.

Using fetch properties to establish a relationship between
entities in di�erent stores

Theobjects involved in this examplewill beHouseHoldTask and anewentity calledNotes.
The following screenshot shows HouseHoldTask and Notes side-by-side in the model
editor.

Donny Wals 251

Practical Core Data

Figure 39: The HouseHoldTask and Notes entities side by side

My HouseHoldTask entity has an identifier property. Normally I wouldn’t add this
property to an entity but in this case, it’s required. The reason it’s required is that I want to
connect my HouseHoldTask to a Notes record through a fetched property. This means
that I must be able to write a predicate that fetches a Notes record frommy underlying store.
The best way to achieve this is to make sure that it’s easy to find the correct record through an
identifier.

My Notes entity has a taskIdentifier property. Whenever I create a new Notes in-
stance I’ll need to assign the current task’s identifier to the note’s taskIdentifier
property so I can match them up later.

Themost interesting detail in the screenshot I just showed you is the fetched property that
I added to HouseHoldTask. I named this property notes and it has the following predi-
cate:

taskIdentifier == $FETCH_SOURCE.identifier

You can’t see it in the screenshot but I used the Data Model Inspector to point this fetched
property to Notes:

Donny Wals 252

Practical Core Data

Figure 40: The data model inspector for the notes fetched property

The predicate that I defined here is evaluated against the target entity. So in this case we’re
looking for a Notes record that has its taskIdentifier set to the $FETCH_SOURCE’s
identifier. The $FETCH_SOURCE is replaced with the instance of HouseHoldTask
that we’re evaluating the predicate for.

Note that the predicate for a fetched property is only evaluated once when you first
access it. The obtained value is always an Array (never a Set or single value), and
it’s not updated unless you ask the managed object context to refresh your object with
refresh(_:mergeChanges:).

When you let Xcode generate your managed objects, you’ll find that it doesn’t generate @NS-
Managed properties for your fetched properties automatically. I last checked this against
Xcode 12.3 and it seems like this is either a bug or an oversight in how Xcode generates man-
aged objects.

Luckily, we can use an extension on HouseHoldTask to add the fetched property to the
managed object subclass ourselves:

extension HouseHoldTask {
@NSManaged var notes: [Notes]

}

Simple enough, right?

To add a new Notes instance for our task or update an existing one, you could use something
that resembles the following method:

Donny Wals 253

Practical Core Data

func updateNote(for task: HouseHoldTask, content: String) {
let context = persistentContainer.viewContext
context.perform {
if task.notes.isEmpty {

let notes = Notes(context: context)
notes.taskIdentifier = task.identifier
notes.contents = content

} else if let notes = task.notes.first {
notes.contents = content

}

do {
try context.save()
context.refresh(task, mergeChanges: true)

} catch {
print("Something went wrong: \(error)")
context.rollback()

}
}

}

In thismethod, I checkwhethermytask’snotes array is empty. If it is, I create a newNotes
instance, assign task.identifier to its taskIdentifier so I can find it later, and I
assign its contents.

If task.notes is not empty, I grab the first (and hopefully only) Notes instance from the
notes array and update its contents.

Then I save themanaged object context and tomake sure thatmyHouseHoldTask updates
its notes array, I call context.refresh(task, mergeChanges: true). If I didn’t
call that method, the notes array would not be recomputed when I access it again and the
value would not be updated.

Note that computing an object’s fetched property always involves a roundtrip to the appro-
priate underlying storage. This means that if you fetch a large number of results from your
Core Data store that all have one or more fetched properties, this could have a significant
performance impact. You could optimize this by avoiding access to the fetched property

Donny Wals 254

Practical Core Data

directly. Instead, you could issue a second fetch request that fetches all of the required objects
in one go. You could put these objects in a dictionary and extract them using the identifier
that you’d normally use in your predicate.

Now that you know how you can establish a relationship across two di�erent model configu-
rations, let’s set up a Core Data model that uses multiple configurations to separate entities
that are synced to CloudKit from local entities.

Creating and using separatemodel configurations

Model configurations are used to group sets of entities together so they can be persisted
alongside each other in a single underlying store. When you create a new .xcdatamodel
file, Xcode creates a Default configuration for you. All of the managed objects that you create
are automatically added to this configuration and in most applications, you won’t create any
configurations of your own. The default is fine.

However, when you want to separate data into separate stores, you’ll need to add custom
configurations.

You can add a newmodel configuration by opening your data model file and long-clicking
the Add Entity button. A popover will appear and you can select Add Configuration. This
will add a new Configuration under the Configurations header. Add two configurations and
name them Local and Synchronized. Next, select the entities that you want to synchronize
to CloudKit and drag them to the Synchronized configuration. Do the same for the models
that you only want to store locally but drag them to your Local configuration.

With the Synchronized configuration selected, make sure the Used with CloudKit checkbox
is selected. While you’re at it, make sure this checkbox is not selected for Local.

This is everything you need to do in the model editor.

Next, let’s update how we configure the NSPersistentCloudKitContainer so it uses
the newly created configurations by creating and using two separate persistent store descrip-
tions.

Creating a custom persistent store description isn’t very complicated. A simple persistent
store description only requires you to tell it which file should be used for its underlying storage,
and what its configuration should be:

Donny Wals 255

Practical Core Data

persistentContainer = NSPersistentCloudKitContainer(name: "Chapter8")

let defaultSqliteLocation = PersistentContainer.defaultDirectoryURL()

let localStoreURL =
defaultSqliteLocation.appendingPathComponent("Local.sqlite")↪→

let localDescription = NSPersistentStoreDescription(url:
localStoreURL)↪→

localDescription.configuration = "Local"

let syncedStoreURL =
defaultSqliteLocation.appendingPathComponent("Synced.sqlite")↪→

let synchronizedDescription = NSPersistentStoreDescription(url:
syncedStoreURL)↪→

synchronizedDescription.configuration = "Synchronized"

// We'll set up this store for use with CloudKit in a moment

persistentContainer.persistentStoreDescriptions = [localDescription,
synchronizedDescription]↪→

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

if let error = error {
fatalError("Core Data store failed to load with error: \(error)")

}
})

Whenyou lookat this code, it should start tomake sensewhyweneed touse fetchedproperties
to establish relationships with objects that aren’t in the same model configuration. These
objects do not share their underlying storage so your fetch and save requests will be sent to
di�erent stores which means that Core Data won’t be able to properly perform its validation
duties.

In the code I just showed you we obtain the path to the default location for our persistent

Donny Wals 256

Practical Core Data

container. Next, I create a local URL and create an NSPersistentStoreDescription.
A�er that, I assign the description’s configuration property by setting it to "Local".
This means that this persistent store description will be used to manage all managed objects
that I’ve added to the Local configuration.

The code goes through the same steps to create a persistent store description for the Syn-
chronized configuration.

I’ve le� a comment in the snippet that reads “We’ll set up this store for use with CloudKit in a
moment”.

Let’s do that now.

The following code should be put where the comment is now:

synchronizedDescription.cloudKitContainerOptions =
NSPersistentCloudKitContainerOptions(containerIdentifier:
"iCloud.com.practicalcoredata.chapter8")

↪→

↪→

synchronizedDescription.setOption(true as NSNumber, forKey:
NSPersistentHistoryTrackingKey)↪→

synchronizedDescription.setOption(true as NSNumber, forKey:
NSPersistentStoreRemoteChangeNotificationPostOptionKey)↪→

This code creates and assigns an instance of NSPersistentCloudKitContainerOp-
tions to the synchronized persistent store description. This is required to make this configu-
ration synchronize to CloudKit. I also enable persistent history tracking for this description
because it’s required for the persistent CloudKit container to do its job.

With this code in place, you’re all set up for partial CloudKit synchronization. Records that are
part of your synchronized configuration are synchronized to CloudKit automatically. Records
that exist in the local configuration are only stored on your user’s device.

So far I’ve shown you how to store data in a private CloudKit container, and how you can store
data privately on the user’s device.

In the next section, I’ll show you how you can add records to the public CloudKit store. This
will allow all of users of your app to share a database. This is very useful if you’re building a
data set that should be accessed by multiple users. For example, a high score table in a game
that shows high scores for all users, allowing them to compete for the best score globally.

Donny Wals 257

Practical Core Data

Adding data to a public CloudKit store
So far, you’ve seen how you can write data to your user’s private CloudKit storage. For some
apps, it makes sense to have your users share data in a public store. When Apple introduced
NSPersistentCloudKitContainer in iOS 13, they didn’t add the ability to synchronize
data to a public database. This changed in iOS 14, we can now set up amodel configuration to
write to the public CloudKit store.

Before I show you how, I want to provide some context about CloudKit’s di�erent stores and
permissions.

CloudKit has three databases for each user:

1. A private database. This is the database you’ve been using so far. Data in this database
is only accessible to the user that owns this database.

2. A public database. This database is shared between all users of your app. When you
write to the public database, make sure you never write any highly personal information.

3. A shared database. I won’t cover this database in this book, but the shared database is
where records that are shared with other users are stored. For example a shared note.

When a user that’s not signed into their iCloud account uses your app, they are only allowed
to read from the public database. They can’t use their private database since they’re not
authenticated, and they also can’t write to the public database.

When a user is signed in, they have read and write access to their private database. It’s their
private database a�er all. A signed-in user also has read access to the public database, and
they can insert new records into the public database. Records in the public database can
bemodified, but only if the currently signed in user owns that record. So not every user can
modify every record in the public database.

Setting up amodel configuration for the public database

To use a public database in your application, you need to create a newmodel configuration
and add the entities that you want to make public to this new configuration.

Next, you need to create a persistent store description for your public database. The following
code shows an example of such a persistent store description:

Donny Wals 258

Practical Core Data

let publicStoreURL =
defaultSqliteLocation.appendingPathComponent("Public.sqlite")↪→

let publicDescription = NSPersistentStoreDescription(url:
publicStoreURL)↪→

publicDescription.configuration = "Public"

let options =
NSPersistentCloudKitContainerOptions(containerIdentifier:
"iCloud.com.practicalcoredata.chapter8")

↪→

↪→

options.databaseScope = .public

publicDescription.cloudKitContainerOptions = options
publicDescription.setOption(true as NSNumber, forKey:

NSPersistentHistoryTrackingKey)↪→

publicDescription.setOption(true as NSNumber, forKey:
NSPersistentStoreRemoteChangeNotificationPostOptionKey)↪→

// add all descriptions to the persistent container
persistentContainer.persistentStoreDescriptions = [localDescription,

synchronizedDescription, publicDescription]↪→

Notice how similar this code is to what you’ve seen before. The main di�erence here is in the
following two lines:

let options =
NSPersistentCloudKitContainerOptions(containerIdentifier:
"iCloud.com.practicalcoredata.chapter8")

↪→

↪→

options.databaseScope = .public

These lines set the scope for my persistent CloudKit container options to .public. This
informs the persistent CloudKit container that this store description should use the public
CloudKit database.

Before we can use this newmodel configuration, we need tomake two changes to the records
that should be stored in the public database.

Donny Wals 259

Practical Core Data

Updating the CloudKit schema for the public database

Since the persistent CloudKit container works di�erently with public data than it does with
private data, we’ll need tomake twomanual changes to the CloudKit schema that’s generated
for us. The easiest way to do this is to first run your application and save one of each entity
that you write to the public store. This will automatically upload your schema to the public
CloudKit store, allowing you to makemodifications in the dashboard.

Alternatively, you can manually call the initializeCloudKitSchema() method on
your NSPersistentCloudKitContainer instance to trigger a synchronization of your
database scheme. Make sure you remove any calls to this method before moving your appli-
cation to production though; you only want to call this method when it’s actually needed.

In the CloudKit dashboard, select the record type that you’re using for the public database
and click the Edit indexes button that’s shown on the detail view for your record type.

On the indexes edit screen add two indexes:

• recordName
• modifiedAt

These indexes are used by NSPersistentCloudKitContainer and are required to be
manually added by us. We’re not going to use them ourselves; they are purely added to allow
NSPersistentCloudKitContainer to work with the public database properly.

The following screenshot shows what your indexes should look like a�er performing this
change. Your object might have more properties than mine, but the two custom added
indexes should be the same.

Donny Wals 260

Practical Core Data

Figure 41: Themanually added indexes

Adding these indexes will allow the persistent CloudKit container to work with the public
database properly.

Understanding the di�erences between the private and
public database

Like Imentionedearlier, thepublic andprivate databases donotwork the samewith thepersis-
tent CloudKit container. The private CloudKit database will inform your application whenever
data changes through silent push notifications. This means that your private database is
always up to date as soon as possible. The private database sends these notifications for new
data, modified data, and deleted data.

Donny Wals 261

Practical Core Data

The public database, however, does not send these notifications. Instead, your application
will need to poll for changes to the public database. This will happen every time your user
launches your app, or roughly every thirty minutes if your app is active. This means that your
local copy of the public database might be significantly behind the CloudKit database.

More importantly, the public database does not inform your application about deleted data.

This means that when you delete a public record, it is deleted from the CloudKit database.
New users will not receive these deleted records because they no longer exist. Existing users
will not delete this deleted record though. If you want to delete a record in a way that hides it
for all users, Apple recommends that you add anisDeleted property to your publicmodels.
You can use a predicate tomake sure that you never show records that have theirisDeleted
flag set to true.

The downside of this approach is that new users will download this record even though they
will never get to see this deleted record. Once a record has been marked as deleted for a
su�icient amount of time, you could permanently delete it from the remote store. You should
only do this if you’re certain that a majority of your users have synced the public record with
its isDeleted property set to true. Deleting an isDeleted record from the public store
a�er a while will ensure that new users do not need to pull down this deleted record.

Because deletions are not synced to all devices, you need to make absolutely sure that you
don’t accidentally synchronize private data to the public CloudKit database. It is your job as a
developer to make it clear to users that they are about to add data to a public database that
all clients can see. You should discourage users from adding private, or sensitive, data to their
public records. Once these records are shared with other clients, they are shared forever with
these clients. Or at least until enough time has passed for clients to purge records that have
their isDeleted flag set to true.

Remember that you shouldn’t purge isDeleted objects too soon. Once one client perma-
nently deletes a record this deletion is synced to the public CloudKit database and other
clients no longer receive updates for this record so they won’t be able to delete this record.

Another important detail to keep in mind when working with public records is that not all
users are allowed to edit them. If your UI allows your users to edit records, you’ll want tomake
sure that you only show edit buttons if your user is allowed to edit a specific record.

The easiest way to determine whether a user is allowed to make modifications to a record
that is synced with CloudKit is to call canUpdateRecord(forManagedObjectWith:)

Donny Wals 262

Practical Core Data

on your persistent CloudKit container with themanaged object ID for the object should be
edited. To determine if a user is allowed to delete a record, you can call canDeleteRe-
cord(forManagedObjectWith:) and adapt your UI accordingly.

To find out if the current user is allowed tomake anymodifications to objects at all, you can
call your persistent container’s canModifyManagedObjects(in:)method and pass in
the persistent store that your user wants to edit. This is useful to determine if your user is
signed in to CloudKit before allowing them to modify data that would otherwise be synced to
their private store or the public CloudKit store.

As long as you keep the quirks of CloudKit’s public database in mind, it’s an amazing way to
provide users with the ability to share data amongst each other. Just make sure that you don’t
expose any private data, and keep in mind that deleted records are not propagated to existing
clients.

Understanding CloudKit’s conflict
resolution
When you’re working with synchronization, you’re going to run into merge conflicts. It’s pretty
much unavoidable to work around two devicesmanipulating the same data and sending their
changes to the remote before pulling in this data from the remote source. In the previous
chapter I already went over this, and I mentioned that determining which data is the most
up-to-date is virtually impossible. It’s always a tradeo�.

CloudKit’s conflict resolution mechanism is simple and usually quite e�ective. Whichever
data is written to the CloudKit store last is considered to be the most up to date. This means
that you can’t configure CloudKit’s merge policy like you can in Core Data. The latest writer
wins, simple and e�ective.

This does mean that collaborating on a single record with multiple devices can be a tough
problem to solve. Apple’s recommended workaround for this is to store fields that can be
collaborated on as a separate entity that has a relationship to the source entity. For example,
aDocument object that has text associatedwith it would normally bemodeled using atext
property that contains all text for the document.

Donny Wals 263

Practical Core Data

Tomake collaboration easier, you can add a new entity DocumentText and have a con-
tributions property on Document that’s a to-many relationship with DocumentText.
You can save contributions as they are added to the document, and construct the document’s
full text by appending all contributions to each other.

Setting this up can be quite tedious but it does provide you with a solid foundation to build
a collaborative tool, and it allows you to present a UI to your user that could allow them to
merge changes manually.

Building a collaborative tool is outside of the scope of this book. The reason for this is that
I can’t provide you with an appropriate overview in a single chapter. I did want to mention
conflict resolution and Apple’s suggested collaborationworkflow so you have an idea of where
to start if you’re building a collaborative tool of your own.

Understanding CloudKit’s migration
limitations
We haven’t covered Core Data migrations yet, and we don’t have to before we talk about
migrations in CloudKit. So far I’ve told you that when you change your Core Data model, and
Core Data gives you a tough time, you should delete and reinstall your application. As you’ll
see in Chapter 9 - Updating your datamodel and performingmigrations, sometimes Core
Data can easily infer how it should migrate from one store version to the next.

When you’ve set up your project to work with CloudKit, there are some special rules to keep
in mind when youmake changes to your Core Data model.

Once you’ve deployed your CloudKit schema to the CloudKit production environment you can
no longer delete record types. You can also not delete any attributes that exist on your records.
The reason for this is that you might have some clients that are still on an older version of
your Core Data model, while other clients have already updated their app to the latest version
with a new Core Data model.

If CloudKit would allow you to delete record types or properties, this would mean that clients
that haven’t updated to your latest Core Data model would no longer be able to synchronize
data properly with CloudKit.

Donny Wals 264

Practical Core Data

Regardless of these limitations, you can update your Core Data model however you please.
You can delete entities, remove properties, andmore. Just be aware that when you delete a
property in your Core Data model, this change will not be synchronized to CloudKit due to the
restrictions that I just mentioned.

The fact that you can have multiple Core Data model versions synchronize to the CloudKit
container can lead to some interesting situations. For example, youmight have renamed or
removed a property in a new version of your Core Data model. This means that applications
that sync with the CloudKit store that are still on your old model version will pull down
incomplete data. Which could result in missing relationships or properties that are nilwhile
they would normally always have a value.

The simplest way to work around this is also the least user friendly. Create a new CloudKit
container for your new Core Data model version. This will generate a new schema and all
of your updated clients will use this new container to synchronize with. This means that
older clients will still sync to the old container, and that older clients will not pull in data from
the new container. This could result in a frustrating experience for your users because their
devices will not be in sync until they update their app.

When the user updates their app, it will automatically sync with the new store which means
that, eventually, both devices should be in sync again. I’m sure you can see how this is a risky
approach to migrating that could lead to duplicated data, frustrated users, and possibly even
data loss.

A better approach would be to add a version attribute to each Core Data entity you create.
This is one of two options that Apple themselves recommend you implement when dealing
with newmodel versions.

You can use the Model Editor to configure your version attribute to be non-optional with a
default value that reflects the current version for this entity:

Donny Wals 265

Practical Core Data

Figure 42: An example of a version attribute with a default value

In your application, you would then only fetch entities that are compatible with the version
that your application expects. You could do this by defining a predicate on each of your entities
that ensures that any fetched objects are equal to a specific version. For example:

extension HouseHoldTask {
static var currentEntityVersion = 1
static var versionPredicate = NSPredicate(format: "%K == %d",

#keyPath(HouseHoldTask.version),↪→

currentEntityVersion)
}

When fetching tasks you would need to apply this predicate:

static var sortedByNextDueDate: NSFetchRequest<HouseHoldTask> {
let request: NSFetchRequest<HouseHoldTask> =

HouseHoldTask.fetchRequest()↪→

request.predicate = versionPredicate
request.sortDescriptors = [NSSortDescriptor(keyPath:

\HouseHoldTask.nextDueDate, ascending: true)]↪→

return request
}

Donny Wals 266

Practical Core Data

You canuse a compoundpredicate if youalsowant to filter your results onadi�erent criteria:

static var overDueTasks: NSFetchRequest<HouseHoldTask> {
let request: NSFetchRequest<HouseHoldTask> =

HouseHoldTask.fetchRequest()↪→

let overDuePredicate = NSPredicate(format: "%K < %@",

#keyPath(HouseHoldTask.nextDueDate),↪→

Date() as NSDate)

request.predicate =
NSCompoundPredicate(andPredicateWithSubpredicates:
[overDuePredicate, versionPredicate])

↪→

↪→

request.sortDescriptors = [NSSortDescriptor(keyPath:
\HouseHoldTask.nextDueDate, ascending: true)]↪→

return request
}

In this example, the versionPredicate ensures that our entity version is 1. When we
bump the entity version to a new version that removes one or more properties, the first step
is to set the default value of version to 2 in the model editor. This will automatically set the
version for newly created tasks to 2.

Since we’ve only removed properties, any records that were synced to CloudKit with version
one of our entity are still valid. These records will just contain some data that we’ll ignore.
This means that for version two we’ll update the versionPredicate to look like this:

extension HouseHoldTask {
static var currentEntityVersion = 2
static var versionPredicate = NSPredicate(format: "%K <= %d",

#keyPath(HouseHoldTask.version),↪→

currentEntityVersion)
}

This predicate will make sure that any fetched entities are either equal to or smaller than

Donny Wals 267

Practical Core Data

version two of our entity.

Versioning entities like this can get you pretty far in terms of gracefully handling di�erent
CloudKit model versions but things can get pretty complicated if you’re not careful. For
example, if you take a bunch of properties from one entity andmove them to a relationship
using a custom Core Data migration (you’ll learn more about this in Chapter 9 - Updating
yourdatamodel andperformingmigrations), it can be really hard tomaintain compatibility
with both your old and new CloudKit model.

When performing a complex migration like this, you’ll likely want to bump the version
property for all stored records of the migrated entity. In the example that I’ve shown you
earlier, the version property was set when inserting a new record into the Core Data store.
This means that records inserted in an old version of the app have their version set to 1
while records that are inserted by a newer version of your app have their version set to 2.
These records can co-exist and both versions of the app can present them to your user.

When you perform a complex migration that makes an existing record incompatible with
the old store, because you’ve moved properties from one entity to another, you’ll need to
manually set the version of your existing records to the current version of the entity. This
will prevent older apps from showing this entity to your users, whichmakes it look like the
data was lost while newer versions of your app will present all data just fine.

It’s not the most elegant solution in my opinion, but it does make sense and you’re going to
have to make a tradeo� somewhere.

Luckily, you can detect scenarios where you’ve updated your entities with a new version
quite easily. This will allow you to show the user a pop-up or a di�erent hint that they should
update the app to see all of their data. You could even prevent your user frommaking any
modifications to the Core Data store if their store contains records that have their version
set to a value that is greater than the version you expected for a specific app version..

Your code to detect an outdated Core Data model would look a little like this:

extension StorageProvider {
func containsNewerEntities() -> Bool {

let context = persistentContainer.viewContext

let tasksRequest: NSFetchRequest<HouseHoldTask> =
HouseHoldTask.fetchRequest()↪→

Donny Wals 268

Practical Core Data

tasksRequest.predicate = NSPredicate(format: "%K > %d",

#keyPath(TaskCompletion.version),↪→

HouseHoldTask.currentEntityVersion)↪→

if let count = try? context.count(for: tasksRequest), count > 0 {
return true

}

let completionsRequest: NSFetchRequest<TaskCompletion> =
TaskCompletion.fetchRequest()↪→

completionsRequest.predicate = NSPredicate(format: "%K > %d",

#keyPath(TaskCompletion.version),↪→

HouseHoldTask.currentEntityVersion)↪→

if let count = try? context.count(for: completionsRequest), count
> 0 {↪→

return true
}

return false
}

}

In this code, I create a fetch request for each versioned entity in the Core Data model, and
assign it a predicate that checks whether the store contains records that have their version
set to a value that’s greater than the current entity version. If this is the case, we know that
the CloudKit store is ahead of this copy of the app, and that the user should obtain a newer
version of the app to safely interact with their data.

Themain thing I want you to keep in mind a�er reading this section is that making changes
to entities that are stored in CloudKit require you to carefully think about the impact your
changes would have on your users, and to make sure that your application continues to work
properly even if your users use di�erent versions of your app on di�erent devices.

Donny Wals 269

Practical Core Data

You’ll want to avoid data loss at all costs, and you’ll want to make sure that your user under-
stands that their data is safe even if it’s not visible to them. If you inform your users that their
app version is outdated and that they should update to interact with their data, your users
will understand where their data went, and they’ll most likely update at the first opportunity
they have.

During development, you can destroy and rebuild your database safely. This means that
you don’t need to worry about migrating from one development version of your store to the
next.

If you have a CloudKit schema in production mode already, resetting your development
environment will reset it to the production version of your database. This will help you test
your CloudKit migrations, and ensures that your development environment’s schema version
is either ahead of production, or the same as production.

In Summary
In this chapter, you have learned all the ins and outs of synchronizing your local Core Data
store with a CloudKit database. You learned how you can add CloudKit support to new
and existing apps, and you learned how CloudKit and Core Data come together in iOS 13’s
NSPersistentCloudKitContainer. You learned that the persistent CloudKit container
automatically handles synchronizing data between your user’s devices as long as they’re
signed in to CloudKit.

You took a brief look at the CloudKit dashboard and I explained that this is where you deploy
your CloudKit database schema to production, reset your development environment, and that
it’s where you canmanually manage your database schema. You also learned that manual
modifications aren’t typically needed because the persistent CloudKit container automatically
initializes your CloudKit schema for you. Keep inmind that youmust disable this feature when
you’re ready to deploy your app to the App Store though.

Next, you learned about writing data to the public CloudKit database, and the modifications
that you need to make to your schema to ensure that your public database is synchronized
properly. You learned that the private CloudKit database updates automatically whenever
something changes. You also learned that the public CloudKit database updates less fre-

Donny Wals 270

Practical Core Data

quently because it doesn’t use silent push notifications for updates. You also learned that
deleted records do not sync from the public database like they do for the private database.

Lastly, you saw how you can handle changes in your database schema gracefully and safely.

In the next chapter, we’re going to dig deeper into migrations by taking a look at performing
migrations for your local Core Data store.

Donny Wals 271

Practical Core Data

Chapter 9 - Updating your datamodel and
performingmigrations
Virtually any application that uses Core Data will go through data model changes at some
point. At the start of your development cycle, this is completely expected and it’s perfectly
fine to delete and reinstall your application as you go through iterations of your app and data
model. In some cases Core Data will be able to automatically migrate your store and in others,
a reinstall will be required.

In this chapter, you will learn how updating a data model works exactly. You will learn how
Core Data deals with migrations, and when and how you have to give Core Data some help
with properly migrating your data model from one version to the next. We’ll end the chapter
by taking control of migrations completely, and you’ll learn when and why this is useful.

This chapter covers the following topics:

• Understanding Core Data migration types
• Adding a newmodel version
• Performing a lightweight migration
• Defining a model map for your migration
• Writing a custommigration policy
• Performing a custom step-by-step migration
• Writing tests for your step-by-step migrations

By the endof this chapter, youwill have a thoroughunderstandingof howCoreDatamigrations
work, and how you can safely update your application’s data model from one version to the
next.

Understanding Core Datamigration
types
When you change your Core Data model, Core Data will perform amigration to update your
store from onemodel version to the next. Apple defines two di�erent migration types in their

Donny Wals 272

Practical Core Data

documentation:

• Lightweight (automatic) migration
• Heavyweight (manual) migration

The names of these migrations already imply how they work. From the naming, it should be
somewhat clear how complex these twomigrations are to implement in an app.

As you’ll find out in this chapter, Apple painted with very broad strokes when they defined
these terms. Inmy opinion, some nuances should be kept inmindwhen thinking ofmigrations
in Core Data. Throughout this chapter, you will learn about two extra migrations that are
essentially special cases of the twomigrations that Apple documented.

I don’t have fancy names for thesemigrations so I’m just going to describe them for you. Here’s
the full list of migration types that you’ll learn about:

• Fully automatic lightweight migration
• Lightweight migration with a model map
• Heavy migration with a custom policy
• Manual migration

Ihave listed thedi�erentmigration types inan increasingcomplexityorder. The fully automatic
migration is the simplest migration where you let Core Data figure out how to get from one
version of your data model to the next.

Migrations that use a model map runmostly automatically, but you provide Core Data with
some extra information to determine how it should move certain properties or entities from
your old model version to your newmodel version.

A heavy migration with a custom policy is used when you can’t express the steps needed to
move from onemodel version to the next using a model mapping. It’s possible to take control
of parts of the migration through code, allowing you to perform complex migrations.

A manual migration is a migration where you take full control over the migration process. You
decide which path Core Data takes to move from onemodel version to the next. You can still
use automatic migrations, model maps, and custom policies with this approach, but you are
in charge of orchestrating how the migrations happen.

Before I explain how a lightweight migration works, let’s build a data model and add a new
model version in Core Data’s model editor.

Donny Wals 273

Practical Core Data

Adding a newmodel version
In this chapter, we’re going to walk through a couple of iterations of an app that allows
collectors of records to keep track of all music albums they own. The app will start with a
simple model that has only one entity. As you probably expect, this model is poorly designed
and it doesn’t scale. For this reason, we’re going to make incremental improvements where
eachmodel version we add improves the data model in one or more ways.

In real life, you would probably not design amodel like the one I’m about to show you. You
also wouldn’t necessarily go through the same iteration since it’s probably better to make all
the improvements in one go rather than using multiple migrations. The fewer migrations you
need to perform on your data model, the better.

The starting point for our album lovers application is based on the following model:

Figure 43: The initial Album entity for the albums app

Up until now, any changes that you’ve made to your data model were made directly on the
model that you already had. This is fine during development. Core Data can analyze your
persistent store and your datamodel when you initialize your Core Data stack. If it detects that
these aren’t compatible with each other, Core Data will attempt to infer how your persistent
store should be changed, and then migrate the persistent store so it works with your data
model again. It can do this for simple changes that I’ll outline in the next section.

If you change your data model in a way that Core Data can’t automatically migrate, the
database initialization will fail and you’ll see an error message that, amongst other output,
contains the following message:

Donny Wals 274

Practical Core Data

"The model used to open the store is incompatible with the one used
to create the store"↪→

This is true regardless of whether you create a newmodel version or not. Core Data is pretty
smart about inferring migrations but it’s not good practice to continuously make changes to a
single model file. At some point, you should create a newmodel version explicitly.

Once you’re done developing your app, and you’re happy with your app and data model,
you’ll usually ship your app to the App Store and eventually to actual users. These users will
start using your app and they’ll store data in their database.

When the time comes to update your database a�er shipping it, you should always create a
newmodel version, even if Core Data would be able to automatically migrate your users to
your updated data model without creating a newmodel version.

The most important reason for this is that when you create a mapping model (which you’ll do
in the section a�er the next section), Core Data wants to know explicitly what the source and
destination model files look like. If your source data model may or may not contain a specific
property because you have multiple variations of your source data model in production, Core
Data will not be able to perform amigration because the “version one” that you’re adding a
model map for might not match the “version one” that Core Data expects.

I’ll explain this more in-depth in the appropriate section so you fully understandwhat amodel
map is, and why this all matters but for now, I just want you to know that you should always
create a newmodel version when you’re about to make changes to amodel version that is
out there on your user’s devices (or if you want to be able to do a cleanmigration).

To add a newmodel version to your project, open your .xcdatamodel file and go to the
Editormenu and select AddModel Version.. . :

Donny Wals 275

Practical Core Data

Figure 44: Editor -> Add Model Version. . .

A new window that allows you to name your newmodel version will open.

Donny Wals 276

Practical Core Data

Figure 45: The “Add Model Version” window

It’s common to pick the base name (in this case Chapter9) and add themodel version to it
separated by a single space. So in this case, I’ve namedmymodel version Chapter9 2. You
can pick a di�erent name if you want, but su�ixing the model with a number makes it easy to
reason about which version you’re on.

You can also choose which model to base your new model version on. In virtually every
situation you’ll want to base your newmodel on the model version that came before it.

A�er adding your newmodel version, you’ll find that your.xcdatamodel file is now a folder.
This folder contains your model versions. When you open the folder, you’ll find that there’s a
green checkmark next to your original model version. This is the current version.

To activate your newmodel, select your .xcdatamodel file and go to the File Inspector on
the right-hand side of Xcode. Here you can select which model version is active. Select your
newmodel version to tell Core Data that it should nowmigrate any persistent stores that are
based on your old model version to the newmodel version.

Donny Wals 277

Practical Core Data

Figure 46: The xcdatamodel folder and the File Inspector

Every time you add a newmodel version, you should make sure to activate your newmodel
version by making it the current model version.

Keep in mind that from this point on you should not make any changes to your old model
version. Any changes that you want to make should bemade to the newmodel version.

Of course, during development, you canmake changes to the newmodel all you want and if
these changes cause problems, just delete your app and reinstall. This is always fine as long as
you’re fine with losing data on your development device, and you remember to stop changing
your data model for a particular model version as soon as your app is sent to the App Store.

If you want to change a data model that you’ve already shipped youmust create a newmodel
version. Even if the change is super small, you need a newmodel version to make sure future
migrations continue to work without problems.

Let’s make some changes to our data model using a lightweight migration.

Donny Wals 278

Practical Core Data

Performing a lightweight migration
The data model for the Album entity is quite basic, and it’s fine if you want to track very basic
information about the album.

However, the data model is maybe a bit too simple and we’re missing a piece of data that’s
essential to me as a music fan. I want to add an album cover to my albums. An app that only
shows text is rather boring in my opinion, and artists put a lot of time into designing their
album covers (or they pay a lot of money to have them designed).

You’ve already seen how you can create a newmodel version. So to add an albumCover
property to the Album entity, you should make sure you open the newly created data model.
You should also double-check that your newly created data model is selected as the current
data model.

In the sample project for this chapter, I added a new albumCover property that’s a Trans-
formable and it’s Optional. I don’t want to force users to assign an album cover for every
album. Maybe they don’t have a picture handy at the time of adding the album, or maybe
they don’t want to assign an album cover at all.

To see how this property is implemented and used in the app, I would like to point you to this
chapter’s finished sample app.

A�er adding this property to the new data model, you can run the app.

When you run the app and initialize the persistent container, Core Data will realize that the
version of the data model that was used to create the existing persistent store is not the same
as the currently active model version.

As I’ve explained earlier, at this point Core Data will attempt to infer how it canmigrate our
current persistent store to the new data model.

In lots of cases, Core Data will have no problem inferring the steps needed to migrate your
store. This inferred collection of steps is called an inferred mapping model. It’s a mapping
that Core Data uses to map records in the existing persistent store to a new persistent store
that’s based on the newmodel version.

By default, Core Data will always attempt to infer a mapping model if the existing persistent
store does match with the active model version. This can happen when you add a newmodel

Donny Wals 279

Practical Core Data

version, but this also happens when youmake changes to the active model version without
creating a new version.

In the Performing a custom step-by-stepmigration you will learn how to disable this default
behavior and you’ll take full control of the migration process.

Core Data can infer a mapping model for any migration that has an obvious migration path.
For example, removing a property, or adding a new optional property are examples of easy
migrations that can be inferred by Core Data.

Other examples of changes that Core Data can infer are:

• Adding a required attribute that has a default value, or changing the default value for
an attribute.

• Making a non-optional attribute optional
• Marking a to-one relationship as to-many
• Renaming entities, attributes, and relationships (as long as you specify a renamingI-
dentifier in the model editor)

Core Data can infer a lot of di�erent migration paths, and you’ll find that in lots of cases a
lightweight migration that’s inferred by Core Data is exactly what you need.

So what happens once Core Data has inferred a mapping model and is ready to perform a
migration?

The answer to this question depends on whether Core Data can infer your migration and
perform a lightweight migration. If this is the case, and you’re using SQLite as your persistent
store, Core Data will perform the entire migration by directly executing statements against
your SQLite database.

Thismakes lightweightmigrations not just convenient, but also very performant because Core
Data doesn’t have to load any of your records, and it doesn’t have to do any processing.

If Core Data can’t perform a lightweight migration, the process is a little bit more involved.

First, Core Data will make a copy of your persistent store to avoid any data loss. Core Data will
read data from this source persistent store, and write it back to a new persistent store that’s
based on your new data model, applying any migration steps in the process.

Core Datawill compare hashes for all of your entities to determinewhich entities have changes
to avoid doing needless processing on entities that haven’t changed.

Donny Wals 280

Practical Core Data

Once Core Data has successfully migrated all your data, it will use the newly created persistent
store as the persistent store for your app, and it will discard the copy that was created at the
start of the progress.

If something goes wrong, Core Data will let you know, and it will copy the original store back
in place and no data will be lost.

As you can see, Core Data does a lot to take the burden ofmigrating your persistent store away
from you. This allows you to focus on building your app, but it also makes it easy to forget to
define a new data model once youmake changes to a model version that’s already used by a
version of your app that’s on the App Store.

Defining amodel map for yourmigration
While Core Data can do a lot of inferring for you, there are times where you’ll need to give Core
Data a nudge in the right direction. For example, when you change an attribute from being an
attribute on an entity to a relationship.

In cases like these, you can create amodelmap that helps CoreDatamigrate this property from
the source entity to a new entity that will be added to the source entity as a relationship.

The Albummodel that I’ve shown you earlier has a listeningNotes attribute. Users of
the albums app can write down what they think of an album in these notes. It’s a place where
they can write a review of their album so they can refer back to it later.

However, di�erent listening sessionsmight have a di�erent impact on the listener. Sometimes
when I listen to an album, a specific lyric just speaks to me at that moment. Or maybe I just
learned some neat fact about the album that impacts my listening experience.

It would be cool if users could add notes for multiple listening sessions rather than a single
note for each album.

To facilitate this, we should change the listeningNotes attribute to a listeningSes-
sion relationship. The listening session entity will have a notes attribute and a date
attribute.

Before adding a newentity to the datamodel, I should create a newmodel version. I’mnaming
mymodel version Chapter9 3 since this is the third version of this chapter’s datamodel. Make

Donny Wals 281

Practical Core Data

sure you base any newmodel you create on the previous model. So in this case I should base
my newmodel on Chapter9 2.

In my newmodel version, I’ve added an entity called ListeningSession. This entity has
a date attribute which is an optional Date, and I’ve added a notes attribute which is a
non-optional string that has an empty string as its default.

I’ve also added a to-one relationship to ListeningSession called album. This relation-
ship points to Album and the delete rule for this relationship is Nullify.

On Album, I’ve removed the listeningNotes attribute and I’ve added a to-many relation-
ship called listeningSessions. It points to ListeningSession, uses album as its
inverse and its delete rule is Cascade.

As you can imagine, Core Data will not be able to infer this migration the way we want. By
default, Core Data will see that we deleted listeningNotes so that’s fine. It will also see
that we’ve added a new relationship called ListeningSession. That’s fine too. Somaybe
Core Data will be able to migrate us from onemodel version to the next without a hitch a�er
all!

There’s one problem though. . .

Core Data will not be able to tell that the deleted listeningNotes attribute from Album
should be used to create an instance of ListeningSession that’s associated with the
note’s source Album.

To help Core Data understand and perform this migration, we can create a custommodel map
that contains enough information for Core Data to perform this migration.

You can define a newmodel map through the File -> New File -> File. . . menu or by pressing
cmd+n. Choose theMapping Model file type from the list of available files.

Donny Wals 282

Practical Core Data

Figure 47: The Mapping Model file type

Next, select your source and destinationmappingmodel. In this case I’m using Chapter9 2
as the source model and Chapter9 3 as the destination model. The last step is to name your
mapping model. I’ve namedmine Chapter9v2Tov3.xcmappingmodel. I like to use a name
that makes it clear which model versions a certain mapping model belongs to.

When you open your mappingmodel, you’ll see an editor that looks a lot like the Model Editor
with one key di�erence. You can use this editor to provide a mapping from the source model
(the old model version) to the destination model (the newmodel version).

Donny Wals 283

Practical Core Data

Figure 48: The Mapping Model editor

Notice that instead of entities, the editor shows Entity Mappings. In this case, AlbumToAl-
bum and ListeningSession. If had an old and new ListeningSession, the entity
mapping for that entity would be called ListeningSessionToListeningSession.
But since we only have ListeningSession in our newmodel, the mapping is just called
ListeningSession.

You’ll find that in our case, most properties on AlbumToAlbum are the same, except for the
new listeningSessions relationship. On the ListeningSession entity the Value
Expression for every attribute is blank. A�er all, there is no source attribute to map from.

For simplemappings, you canwrite$source.somePropertya�er oneof thedestination’s
attributes in the Value Expression field. However, when you’re writing a custommapping,
you’ll usually need to do a little bit more work than that. Otherwise, Core Data would have
been able to create this mapping on its own in almost all cases.

To perform this migration, we need to do two things:

Donny Wals 284

Practical Core Data

1. Copy the listeningNotes from the old Album entity to the notes property on
ListeningSession.

2. Connect the new ListeningSession record to the existing Album.

The first step of thismigration is relatively simple. When you select theListeningSession
mapping, you can use the inspector on the right-hand side to configure the mapping. In
this case, ListeningSession should take a property from Album, so we should set the
Source for the ListeningSessionmapping to Album. This will automatically rename
the mapping to AlbumToListeningSession.

Figure 49: The updated ListeningSession mapping

Once you’ve adjusted themapping source, you can set the Value Expression for notes on
ListeningSession to $source.listeningNotes.

At this point, Core Data will map your old Album records to new Album records using the
mapping model. It will also use each Album in your store to create a ListeningSession.
This ListeningSession copies the Album’s listeningNotes to the notes property
on ListeningSession, leaving us with two unconnected records.

Let’s connect the relationship between Album and ListeningSession next.

Adding the connection between our Album and ListeningSession isn’t hard, but it’s
definitely not straightforward in my opinion. Especially if you’re not familiar with Objective-C
syntax. (And let’s be honest, who is these days?)

Donny Wals 285

Practical Core Data

To add a connection between ListeningSession and Album, select the AlbumToLis-
teningSession entity mapping. Select the album attribute mapping and take a look at
the editor on Xcode’s right-hand side for this property.

Set the Source Fetch option to Auto Generate Value Expression, set the Key Path to
$source and set theMapping name to AlbumToAlbum.

Figure 50: Themapping configuration for the album attribute

Once you’ve done this, you’ll see that Xcode adds the following Value Expression for al-
bum:

FUNCTION($manager,
"destinationInstancesForEntityMappingNamed:sourceInstances:" ,
"AlbumToAlbum", $source)

↪→

↪→

This code is used to call a method on the NSMigrationManager that’s responsible for
performing your migration. This method call is done through Objective-C which is why it
looks so strange. The$manager is a reference toNSMigrationManager. Thedestina-
tionInstancesForEntityMappingNamed:sourceInstances: string resembles
the method that’s called on NSMigrationManager to configure our mapping. "Album-
ToAlbum" and $source are passed to this method as arguments.

The result is that the album relationship on ListeningSession is set to the output of the
AlbumToAlbummapping.

Before you run your app, there is one last thing you should do.

Donny Wals 286

Practical Core Data

Since Core Data attempts to infer mapping models by default, you should manually set Core
Data up to no longer use inferred mapping models as its default migration method.

You do this by setting the shouldInferMappingModelAutomatically property on
your persistent store description to false:

let description =
persistentContainer.persistentStoreDescriptions.first!↪→

description.shouldInferMappingModelAutomatically = false

This is all the work that you need to do to apply the custom model mapping that I’ve just
shown you. There is one caveat though. And it’s an important one.

Once you define a model mapping, you cannot make changes to the source or destination
model anymore. When you create amodel mapping file, this mapping file will be locked to
the version of the model map that existed when you created the mapping.

For that reason, you should always make sure that you only define a mapping model once
you’re satisfied with your destination model.

If you do need to make changes to your destination model a�er defining your model map,
you should delete and recreate your model mapping. Not doing so will result in a migration
error because Core Data can not find amodel map that migrates your store from the source to
the current destination.

It’s also important to realize that once you’ve added a model mapping and disabled Core
Data’s inferred model maps, you’ll need to manually define a model map from every version
in your database to every other version because Core Data always attempts to migrate your
store in one pass.

This means that any users on v1 of your model will be migrated directly to v3. This migration
will require a mapping that you’ve defined where the source model version is your initial
model version and the target model version is your latest model version.

When you add a v4 data model, you’ll need to create a mapping model from v1 to v4, v2 to v4,
and from v3 to v4.

This can be quite tedious, and in the Performing a custom step-by-stepmigration section you
will learn how you can combine inferred mapping models, manual mapping models, and

Donny Wals 287

Practical Core Data

custommigration policies to perform a step-by-step migration where youmigrate your users
one version at a time.

While this is a more expensive way to migrate your users, it’s also more flexible, and it allows
you to define onemapping model for each source model version.

Before we dive in and take full control of the migration process, there’s one last thing I want
to show you; migration policies.

Writing a custommigration policy
In the previous section, you saw how you can transform a property into a relationship by
providing amodelmapping that generates a Value Expression. You can perform fairly complex
migrations through mapping models, but there are times when you’ll want to take more
control of how a property is mapped from onemodel version to another.

In these scenario’s you’ll define a custommigration policy.

A custommigration policy is defined as a subclass of NSEntityMigrationPolicy.

Core Data will create an instance of your custommigration policy when needed, and it will
ask your migration policy to migrate each record one by one.

The easiest way to explain how this works, is to define a property mapping of our own. In the
current model of the Albums app, each album has its artist defined as a string. Let’s change
this soartist is defined as a relationship betweenArtist andAlbumwhereArtist has
a to-many relationship with Album.

As always, don’t forget to add a newmodel version, and don’t forget to make all changes to
your newmodel before you create your model mapping. If you’ve created themodel mapping
before finalizing your newmodel, create a fresh model map for your migration.

To achieve our goal of creating an Artist object that’s unique by name with a to-many
relationship to Album, we’ll write a migration policy to make sure that we only create a new
instance of Artist if we don’t already have an artist in the source model with the same
name. That way, we’ll be certain that artists are always unique based on their name, and we’ll
know that all relationships are configured properly.

Donny Wals 288

Practical Core Data

In your model mapping, select the mapping that you want to write a custom policy for (in this
case AlbumToAlbum) and open the inspector area to specify your Custom Policy class.

When specifying a custom policy, you should always prefix your class name with the
module that the class is part of. In my case, that’s StorageProvider. My class
is named V3AlbumToAlbumPolicy so the custom policy should be Storage-
Provider.V3AlbumToAlbumPolicy:

Figure 51: Setting a custom policy class

We’ll write the V3AlbumToAlbumPolicy in a moment.

Youmight be wondering why we’re specifying a custom AlbumToAlbummigration policy.
A�er all, the migration from a version 3 album to a version 4 album isn’t that complex.

Correctly generating an Artist for each album is the complex part in this migration.

Your initial reactionmight be to write an AlbumToArtist policy, similar to how you used
the mapping model editor earlier to specify an AlbumToListeningSessionmapping.

The reasonwe’re going towrite a customAlbumToAlbummigration is that Core Data expects
us to map one instance of a model, to one or more instances of another model (a di�erent
entity, or a new instance of the same entity).

If we’d migrate from album to artist, some albumsmight produce a new artist instance while
others would not produce an artist to avoid duplicates.

Core Data also expects that each migrated record is based on one source record. So if
we’d set up a to-many relationship from Artist to Album, that means we’d have multi-

Donny Wals 289

Practical Core Data

ple source records for the same artist since there’s more than one Album that could produce
the Artist.

The most straightforward, and stable way I have found to perform the migration we’re about
to perform is to implement creating an Artist instance as a side-e�ect of migrating Album.
It might not be the absolute cleanest method, but it works. And it works well.

The first thing you’ll need to do when writing a custommigration policy is to define a subclass
of NSEntityMigrationPolicy. Create a new file for your custom policy and give it a
name. I usually choose the source model version, followed by the source entity and then the
destination entity.

In this case, I namedmy file and class V3AlbumToAlbumPolicy. Here’s what the base for
our custommigration policy looks like:

class V3AlbumToAlbumPolicy: NSEntityMigrationPolicy {
// we'll need this property later
var artists = [String: NSManagedObject]()

override func createDestinationInstances(forSource sInstance:
NSManagedObject, in mapping: NSEntityMapping, manager:
NSMigrationManager) throws {

↪→

↪→

}
}

Amigrationwith a custompolicy provides three customization points for you as a developer:

1. Create destination instances
2. (Re-)create relationships
3. Validate your migration

Dependingonhowcomplex yourdatamodel is, andhowexactly your relationships aredefined,
youmight never need step twoor three. In themigration that Iwant to showyou in this chapter,
we’ll only implement the first step.

Even though we’re going to establish a relationship in our migration, we can set this relation-
ship up in a single step. The reason for this is that we’ll create our Artist instance at the

Donny Wals 290

Practical Core Data

same time wemigrate Album, and we’ll immediately set the newly created Artist as the
artist for the migrated Album.

In otherwords, we’remigrating theold album’s string-basedartist to an instanceofArtist.

Setting the created Artist as the album’s artist is enough to let Core Data establish the
other end of the relationship on its own and we don’t have any extra work to do.

Before we get down to writing the implementation for this custommigration, youmust un-
derstand at what point of the migration process Core Data invokes our custom migration
policy.

I already explained that Core Data will set up a persistent store for both your old and your new
store. It does this, however, without properly loading and using your entitymodel. Thismeans
that Core Data will not have fully loaded and configured your NSManagedObjectModel,
and that it does not apply any of its validation rules just yet.

This allows you to migrate your entities one by one and establish relationships later, if
needed.

The consequence of this is that you should assume that you only have access to the NSMan-
agedObject representation of your entity rather than your NSManagedObject subclass.
This makes sense because your managed object subclass will typically represent your new
model version while you will access your entity’s old version as well as its new version.

I have performed successful migrations where I’ve usedmananaged object subclasses in my
entity policy, but I’ve found that it’s much easier to remain aware of where in the migration
process you currently are operating by using NSManagedObject only.

As you’ll see in a moment, this doesn’t mean you can’t access any of the properties that you
defined on your entities. You can use setValue(_:forKey:) and value(forKey:) to
set and get values on your entity.

Let’s lookat the first step inmycreateDestinationInstances(forSource:in:manager:)
method:

override func createDestinationInstances(forSource sInstance:
NSManagedObject, in mapping: NSEntityMapping, manager:
NSMigrationManager) throws {

↪→

↪→

let destinationAlbum =
NSEntityDescription.insertNewObject(forEntityName: "Album",↪→

Donny Wals 291

Practical Core Data

into:
manager.destinationContext)↪→

let destinationKeys = destinationAlbum.entity.attributesByName.keys

for key in destinationKeys {
guard sInstance.entity.attributesByName.keys.contains(key) else {

continue
}

if let value = sInstance.value(forKey: key) {
destinationAlbum.setValue(value, forKey: key)

}
}

// we'll write more code here...
}

This first step migrates the Album entity. Since we shouldn’t use Album, and don’t have
access to our managed object model, we need to use NSEntityDescription to create a
newmanaged object instance.

Note that we have access to twomanaged object contexts in this method through the man-
ager. A destination context, and a source context. The destination context is where we store
our new, migrated models. We can use the source context to obtain extra information for the
migration if needed.

In this case the source instance that’spassed tocreateDestinationInstances(forSource:in:manager:)
is su�icient.

It’s possible to obtain the attributes that are defined on your destination model through
the target managed object’s entity.attributesByName. This property is a dictionary.
In this case, I loop over all keys in the attributes dictionary, and use these keys to get the
corresponding values from the source instance.

Note that you should only call value(forKey:) on the source managed object with keys
that exist on that managed object. If you provide a key that the managed object does not

Donny Wals 292

Practical Core Data

recognize your migration will fail with a key-value coding related error.

Theeasiestway tocheckwhether youcanaccessa specificproperty throughvalue(forKey:)
is to check whether the source instance’s entity.attributesByName contains the key
you want to use.

Since our migration for Album is relatively simple, the code to perform the base migration is
fairly simple too.

Note thatattributesByNamewill only returnattributes, not relationships. Thismeans that
a�er the for loop in the code I’ve shown you earlier, the Album’s listeningSessions
and artist are not set. This isn’t a problem because Core Data will migrate our Listen-
ingSession instances a�er the Album instances are migrated. We know this because Core
Data migrates entities in the order that they occur in the mapping editor.

In my case, ListeningSessionToListeningSession is the last migration to be per-
formed:

Figure 52: The order of the mappings determines the migration order

The next step is to extract the album’s artist name, create a new artist record if needed, and
then associate this artist with the album that we’ve migrated.

The followingaddition tocreateDestinationInstances(forSource:in:manager:)
handles this:

guard let artistName = sInstance.value(forKey: "artist") as? String
else {↪→

return
}

Donny Wals 293

Practical Core Data

if let artist = artists[artistName] {
destinationAlbum.setValue(artist, forKey: "artist")

} else {
let artist = NSEntityDescription.insertNewObject(forEntityName:

"Artist",↪→

into:
manager.destinationContext)↪→

artist.setValue(artistName, forKey: "name")
artists[artistName] = artist
destinationAlbum.setValue(artist, forKey: "artist")

}

This codecheckswhether theartistsdictionary that’s added toV3AlbumToAlbumPolicy
contains an entry with the source album’s artistName. If this is the case, the destination
album’s artist key is set to our artist instance.

If we need to create a new artist, I insert one using NSEntityDescription, and I assign
its name. Next, I add this new instance to my artists dictionary and then I assign it to the
destination album’s artist property.

There’s one last line of code that we need to add to createDestinationIn-
stances(forSource:in:manager:):

manager.associate(sourceInstance: sInstance,
withDestinationInstance: destinationAlbum,
for: mapping)

This line of code tells themigrationmanager that’s responsible for orchestrating themigration
to create an association between the source and destination instances. This allows themi-
gration manager to determine how other objects should be migrated. For example, if they’re
migrated using a FUNCTION in their object mapping like you saw in the previous section.

Migrations like the one I’ve just shown you are relatively slow; there’s a reason they’re called
heavyweight. Core Data has to load and process every record in your database which means
that a large database could take a while to migrate when using a migration policy.

Donny Wals 294

Practical Core Data

Whenever possible, you should try to stick to lightweight migrations, and to limit the number
of heavyweight migrations that you create for your store as much as you can.

Themigration policy I just showed you specialized in migrating Album frommodel version
3 to model version 4. As I’ve mentioned earlier, Core Data attempts to migrate your store
in one pass when possible. This means that you would normally have to make sure that
your migration policy is compatible with future versions as well. For example to migrate
from version 3 to version 5, version 6, or even higher. You can define di�erent policies for
di�erent destination versions, but the source could vary depending on your user’s current
model version.

Because this can be quite frustrating, and your migrations can grow increasingly complex
as time goes on, there are times where you might opt to migrate your store one step at a
time. Migrations that are performed step by step are much slower thanmigrations that are
performed in a single pass, but they have their uses. And if anything, studying and writing a
step-by-step migration engine can help you gain unique insights into howmigrations work.

Performing a custom step-by-step
migration
While I cannot stress enough that even though single-step migrations like Core Data performs
out of the box can be a chore to support as a developer, they are the most e�icient migrations
by far. Creating a mapping model from each version of your store to each other version of
your model is tedious, and it’s never a fun task, but it can be orders of magnitude faster than
migrating your Core Data store one step at a time.

However, creating mappingmodels to go from one version tomultiple others can be error-
prone. For example, when you define mappingmodels to migrate from version 1 to version
2, version 1 to version 3, and version 1 to version 4, it’s not unlikely that you make a small
mistake in one of the three migrations that could result in data loss.

Tomake themigration path easier to reason about, and to reduce the risk of mistakes, you
can take control of the migration process and perform your migration one step at a time.

This comes at a performance cost. I can’t stress that enough.

Donny Wals 295

Practical Core Data

On the flip side, it makes your migrations simpler to manage, and it’s less likely that you’ll
make amistake because you only define a single migration for each newmodel version.

The nice part of taking full control is that you can still allow Core Data to infer migration paths.
This means that you only define model maps andmigration policies for the migrations that
need them. For every other step, Core Data can still infer the migration on its own.

Since Core Data doesn’t have support for step-by-stepmigrations out of the box, we’ll need to
build a custommigrator.

This custommigrator will perform the migration by going through the following steps:

1. Determine which model version your store is currently on
2. Find the model version that you should migrate to (if the store isn’t at the latest model)
3. Perform the migration
4. Check if there’s another migration needed (repeat steps 2-3 until you’re at the latest
version)

These steps sound simple yet complex at the same time. It doesn’t look like we’ll have to
perform a lot of work, and the steps on their own don’t sound terribly complicated.

The complex part of this step-by-step migration is that we’ll need to write a lot of code to
perform the migrations.

The order in which I’m going to show you the code might seem a little bit strange. We’ll write
somecode that doesn’twork first. Thenwe’re going to addhelpers to implement themigration
functionality until the code works.

If you’re following along with this chapter, you’ll want to follow along until the end. Alterna-
tively, you can look at the finished code in this chapter’s code bundle.

I’m showing you the code in this order on purpose. I firmly believe that this approach will
help you understand the di�erent migration components better, and it’s a little insight into
how you can design code by working your way in from the surface of your API.

First, update the StorageProvider by adding the following code to its initializer:

init() {
persistentContainer = PersistentContainer(name: "Chapter9")

for description in persistentContainer.persistentStoreDescriptions
{↪→

Donny Wals 296

Practical Core Data

description.shouldInferMappingModelAutomatically = false
description.shouldMigrateStoreAutomatically = false

}

do {
let migrator = CoreDataMigrator(container: persistentContainer)
try migrator.migrateStoresIfNeeded()

} catch {
fatalError("Core Data store migration not possible: \(error)")

}

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

if let error = error {
fatalError("Core Data store failed to load with error:

\(error)")↪→

}
})

}

Depending on your app, it’s possible that setting up your persistent container involves more
code. The key parts of what I’m trying to show you here are the following:

Set shouldInferMappingModelAutomatically and shouldMigrateStoreAu-
tomatically to false for every store you want to perform a step-by-stepmigration on.
In this case, I only have a single store description so the for loop isn’t needed, but I added it
so you can see how you could set these properties on all descriptions automatically.

Next, I set up an instance of CoreDataMigrator and call migrateStoresIfNeeded
on it before I tell the persistent container to load its stores.

The migrator is the next bit of code I want to show you:

class CoreDataMigrator {
let container: NSPersistentContainer

init(container: NSPersistentContainer) {

Donny Wals 297

Practical Core Data

self.container = container
}

func migrateStoresIfNeeded(to version: ModelVersion = .current)
throws {↪→

for description in container.persistentStoreDescriptions
where description.shouldMigrateStoreAutomatically == false {

guard let storeURL = description.url else {
print("Cannot migrate a non-file based store description")
continue

}

try migrateStore(at: storeURL, to: version)
}

}

private func migrateStore(at storeURL: URL, to: ModelVersion)
throws {↪→

// we'll perform our migrations here
}

}

In this code I don’t do anything special just yet. When migrateStoresIfNeeded is called,
the code loops over all persistent store descriptions and if the description’s shouldMi-
grateStoreAutomatically is set to false, we’re going to step in and migrate that
store by ourself.

Next, I make sure that we have a URL for the underlying store. If we don’t, we’re probably
dealing with a store type that’s not file based so we don’t need to migrate it.

Next, I call migrateStore(at:to:). This will migrate the store at the given URL to
the current model version. The ModelVersion that is passed from migrateStore-
sIfNeeded(to:) to migrateStore(at:to:) is an enum that you should define your-
self. This enum is used to keep track of all model versions in your app. Here’s what the
ModelVersion looks like for the Core Data model from this chapter:

Donny Wals 298

Practical Core Data

enum ModelVersion: String, CaseIterable {
case v1 = "Chapter9"
case v2 = "Chapter9 2"
case v3 = "Chapter9 3"
case v4 = "Chapter9 4"

static var current: ModelVersion {
return .v4

}
}

We have four di�erent model versions, and the v4model is the latest so that’s what we return
as the current version. The string values for this enum’s cases should always match the
model versions that you added in themodel editor. These strings will be used to load di�erent
versions of your datamodel, andwewon’t be able to load them if there’s amismatch between
the string here and the model version name in the model editor.

The next step is to implement the migrateStore(at:to:) method. This method will
kick o� all of our migration work. Here’s what its implementation looks like:

// This method is defined in the CoreDataMigrator class
private func migrateStore(at storeURL: URL, to version: ModelVersion)

throws {↪→

guard try requiresMigration(at: storeURL, toVersion: version) else
{↪→

return
}

try forceWALCheckpointingForStore(at: storeURL)

var currentURL = storeURL

for step in try migrationStepsForStore(storeURL, toVersion:
version) {↪→

let migratedStoreURL = try executeMigrationStep(step, on:
currentURL)↪→

Donny Wals 299

Practical Core Data

if currentURL != storeURL {
try NSPersistentStoreCoordinator.destroyStore(at: currentURL)

}

currentURL = migratedStoreURL
}

try NSPersistentStoreCoordinator.replaceStore(at: storeURL,
withStoreAt: currentURL)↪→

if currentURL != storeURL {
try NSPersistentStoreCoordinator.destroyStore(at: currentURL)

}
}

There’s a lot going on in this method. And that makes sense, this is where we orchestrate the
entire migration from!

The first thing I do in this method is check whether the store at the provided URL needs a
migration. There’s no point in attempting to migrate a store that’s already at the appropriate
version, nor is there a point in attempting to migrate a store that doesn’t exist yet.

Here’s what my implementation for requiresMigration(at:toVersion:) looks
like:

func requiresMigration(at storeURL: URL, toVersion version:
ModelVersion) throws -> Bool {↪→

guard FileManager.default.fileExists(atPath: storeURL.path) else {
return false

}

let metadata = try NSPersistentStoreCoordinator.metadata(at:
storeURL)↪→

return try ModelVersion.compatibleVersionForStoreMetadata(metadata)
!= version↪→

Donny Wals 300

Practical Core Data

}

First, I check whether a file exists at the provided path. If no file exists, we don’t need to
migrate because a new store will be created at that path. This new store will always be created
based on the current model version.

A�er that, I extract the metadata for the current store from the provided storeURL. This
metadata is then used to figure out which ModelVersion is compatible with the source
store. If the store’s model version and the target model version for our migration are the same,
the store doesn’t need to bemigrated.

I use two helper methods in this method. The first is metadata(at:). This method is
defined in an extension on NSPersistentStoreCoordinator as follows:

extension NSPersistentStoreCoordinator {
static func metadata(at storeURL: URL) throws -> [String: Any] {
return try NSPersistentStoreCoordina-

tor.metadataForPersistentStore(ofType: NSSQLiteStoreType, at:
storeURL,

↪→

↪→

options: nil)↪→

}
}

A�er I obtain the metadata, I call compatibleVersionForStoreMetadata on Mod-
elVersion. This method is defined as an extension on the ModelVersion enum:

// This method is defined on the ModelVersion enum
static func compatibleVersionForStoreMetadata(_ metadata: [String:

Any]) throws -> ModelVersion? {↪→

let bundle = Bundle(for: CoreDataMigrator.self)

let compatibleVersion = try ModelVersion.allCases.first {
modelVersion in↪→

let model = try
NSManagedObjectModel.managedObjectModel(forResource:
modelVersion.rawValue, in: bundle)

↪→

↪→

Donny Wals 301

Practical Core Data

return model.isConfiguration(withName: nil,
compatibleWithStoreMetadata: metadata)↪→

}

return compatibleVersion
}

This method iterates over all ModelVersion cases that we have defined, and it attempts to
load the managed object model for each version. I use the case’s rawValue for this. That’s
why I mentioned earlier that your version’s raw values should match your model version
name.

Next, I callisConfiguration(withName:compatibleWithStoreMetadata:) on
the loaded model to determine if the current source is compatible with the model version
that was just loaded.

If the store is compatible, we have found the current model version.

In the event that no compatible store version was found, compatibleVersionFor-
StoreMetadata(_:) returnsniland I throwaCoreDataMigrationError.noCompatibleStoreVersionFound
error from migrationStepsForStore(_:toVersion:). You’ll see the implementa-
tion for this method in a moment

TheCoreDataMigrationError object is an enum I defined to encapsulate various things
that could go wrong during the migration process:

enum CoreDataMigrationError: Error {
case mappingModelNotFound
case noCompatibleStoreVersionFound

}

The enum above is the full enum for all errors that you’ll encounter throughout the rest of this
section.

Oncewe’ve determined that the provided store should bemigrated, I callforceWALCheck-
pointingForStore(at:). In Chapter 6 - Sharing a Core Data store with apps and
extensions, I explained that persistent history tracking uses SQLite’s write-ahead logging

Donny Wals 302

Practical Core Data

functionality to isolate and track transactions before writing them to the underlying SQLite
store.

Before we can run themanual migration, we need to force SQLite to merge the write-ahead
log and themain SQLite file. We can do this by creating a persistent store coordinator, loading
the source store, disabling and deleting the write-ahead logging file, and then removing the
source store from the persistent store coordinator.

In essence, we’ll set up part of a Core Data stack and tear it down tomerge the write-ahead
log into the store and subsequently delete the write-ahead logging file:

// This method is defined in the CoreDataMigrator class
private func forceWALCheckpointingForStore(at storeURL: URL) throws {

let bundle = Bundle(for: Self.self)
let metadata = try NSPersistentStoreCoordinator.metadata(at:

storeURL)↪→

guard let currentModel = NSManagedObjectModel.mergedModel(from:
[bundle], forStoreMetadata: metadata) else {↪→

return
}

do {
let persistentStoreCoordinator =

NSPersistentStoreCoordinator(managedObjectModel:
currentModel)

↪→

↪→

let options = [NSSQLitePragmasOption: ["journal_mode": "DELETE"]]
let store = try persistentStoreCoordinator.addPersistentStore(at:

storeURL, options: options)↪→

try persistentStoreCoordinator.remove(store)
}
catch {
fatalError("failed to force WAL checkpointing, error: \(error)")

}
}

Donny Wals 303

Practical Core Data

There’s a bunch of code in this function but it does exactly what I described earlier.

Becausewe’re setting upmost of a Core Data stack in thismethod, we need to load amanaged
object model. As it turns out, this isn’t trivial. To initialize an NSPersistentStoreCo-
ordinator, we need to knowwhich model version should be used by the coordinator. We
can use the metadata(at:) extension I’ve shown you earlier to extract the current store’s
metadata. This metadata can then be used to initialize a managed object model by calling
mergedModel(from:forStoreMetadata:) onNSManagedObjectModelwith the
extracted metadata.

Next, I set up an NSPersistentStoreCoordinator, configure it to delete the write-
ahead log, and add the persistent store that we’re migrating to it.

A�er adding the persistent store, the write-ahead log will be deleted synchronously so the
next step is to remove the persistent store from the coordinator so we’re free to continue with
our migration.

The next step in migrateStore(at:to:) was to determine which steps should be taken
to migrate our persistent store to the latest model version. This is done by calling migra-
tionStepsForStore(_:toVersion:).

This method is responsible for determining our persistent store’s current model version, and
computing the steps that need to be taken to migrate the source store to the current model.
We’ll do this by creating instances of a MigrationStep object.

Each MigrationStep contains the required information to update our store from one
version to the next. As youmight expect, we’ll have onemigration step for eachmodel version
that our store is behind on the current model version.

Let’s look at the implementation of migrationStepsForStore(_:toVersion:):

// This method is defined in the CoreDataMigrator class
private func migrationStepsForStore(_ storeURL: URL, toVersion

version: ModelVersion) throws -> [MigrationStep] {↪→

let metadata = try NSPersistentStoreCoordinator.metadata(at:
storeURL)↪→

guard let sourceVersion = try
ModelVersion.compatibleVersionForStoreMetadata(metadata) else {↪→

Donny Wals 304

Practical Core Data

throw CoreDataMigrationError.noCompatibleStoreVersionFound
}

return try migrationSteps(from: sourceVersion, to: version)
}

In order to determine the appropriate migration steps, we’re going to need to know which
model version we’re at, and we’ll need to knowwhich steps we should take to get there.

To do this, we can extract our store’s metadata again, and we’ll use the compatibleVer-
sionForStoreMetadata helper that I’ve shown you earlier to find the ModelVersion
that matches the current state of the store.

Once the current model version is found, I call migrationSteps(from:to:) and return
its result. Here’s what migrationSteps(from:to:) looks like:

// This method is defined in the CoreDataMigrator class
private func migrationSteps(from sourceVersion: ModelVersion,

to destinationVersion: ModelVersion)
throws -> [MigrationStep] {↪→

var currentVersion = sourceVersion
var steps = [MigrationStep]()

while currentVersion != destinationVersion, let nextVersion =
currentVersion.next() {↪→

let step = try MigrationStep(sourceVersion: currentVersion,
destinationVersion: nextVersion)↪→

steps.append(step)
currentVersion = nextVersion

}

return steps
}

This method uses a while loop to create migration steps and add them to the steps array,

Donny Wals 305

Practical Core Data

as long as the currentVersion variable is not equal to the destinationVersion of
the migration, and as long as currentVersion.next() does not return nil.

Let’s take a look at how next() is defined on ModelVersion:

// This method is defined on the ModelVersion enum
func next() -> ModelVersion? {

switch self {
case .v1: return .v2
case .v2: return .v3
case .v3: return .v4
case .v4: return nil
}

}

This method is very simple. It’s just a manual mapping from version to version. When you call
next() on ModelVersion.v1, you’ll get ModelVersion.v2 back. Since v4 is the last
model version at this time, we return nilwhen next() is called on v4.

Inside of the while loop I create a MigrationStep for each step that we need to go through.
I also set currentVersion to nextVersion so the next time we call currentVer-
sion.next()we get the next step in the migration instead of calling next() on the same
ModelVersion over and over again.

Let’s see what’s inside of a MigrationStep next.

class MigrationStep {
let sourceModel: NSManagedObjectModel
let destinationModel: NSManagedObjectModel
let mappingModel: NSMappingModel

init(sourceVersion: ModelVersion, destinationVersion: ModelVersion)
throws {↪→

let bundle = Bundle(for: Self.self)
let sourceModel = try

NSManagedObjectModel.managedObjectModel(forResource:
sourceVersion.rawValue, in: bundle)

↪→

↪→

Donny Wals 306

Practical Core Data

let destinationModel = try
NSManagedObjectModel.managedObjectModel(forResource:
destinationVersion.rawValue, in: bundle)

↪→

↪→

guard let mappingModel = MigrationStep.mappingModel(from:
sourceModel, to: destinationModel, in: bundle) else {↪→

throw CoreDataMigrationError.mappingModelNotFound
}

self.sourceModel = sourceModel
self.destinationModel = destinationModel
self.mappingModel = mappingModel

}
}

TheMigrationStep object is arguably themost important part of this custom step-by-step
migration flow. Every migration step will contain all the information that we need to migrate
our persistent store from onemodel version to the next version.

Each migration step knows about its source and destination models, and it knows how to
migrate from this source to the destination.

Note that I call MigrationStep.mappingModel(from:to:in:) in this initializer.

I’ll show you the implementation for this method in a moment, I want to explain what it does
first.

To migrate from one version to the next, we’re not going to write raw SQL ourselves. We’re
also not going to brute force anymigrations. We’ll let Core Data perform the actual migrations,
just like we did before.

The big di�erence here, is that we control the steps. We decide which path Core Data takes
from our source model to the destination model. We won’t decide how it takes each step. For
that reason, we’ll still use mapping models, and we’ll even allow Core Data to infer a mapping
model if needed.

Here’s what mappingModel(from:to:in:) looks like:

Donny Wals 307

Practical Core Data

class MigrationStep {
// instance properties...

// init...

private static func mappingModel(from sourceModel:
NSManagedObjectModel,↪→

to destinationModel:
NSManagedObjectModel,↪→

in bundle: Bundle) ->
NSMappingModel? {↪→

guard let customMapping = NSMappingModel(from: [bundle],
forSourceModel:

sourceModel,↪→

destinationModel:
destinationModel) else {↪→

return try? NSMappingModel.inferredMappingModel(forSourceModel:
sourceModel,↪→

destinationModel: destinationModel)↪→

}

return customMapping
}

}

The process to decide which mapping model Core Data should use is relatively straightfor-
ward.

If we can find a custommapping model for a given source and destination model, we use the
custommapping model.

When no custommapping model was defined, we ask Core Data to infer one for us.

This is all the code we need to set up our migration steps. Let’s take another look at mi-

Donny Wals 308

Practical Core Data

grateStore(at:to:) to see where we’re at in the migration process right now:

// This method is defined in the CoreDataMigrator class
private func migrateStore(at storeURL: URL, to version: ModelVersion)

throws {↪→

try forceWALCheckpointingForStore(at: storeURL)

var currentURL = storeURL

for step in try migrationStepsForStore(storeURL, toVersion:
version) {↪→

// ->> you are here <<-
let migratedStoreURL = try executeMigrationStep(step, on:

currentURL)↪→

if currentURL != storeURL {
try NSPersistentStoreCoordinator.destroyStore(at: currentURL)

}

currentURL = migratedStoreURL
}

try NSPersistentStoreCoordinator.replaceStore(at: storeURL,
withStoreAt: currentURL)↪→

if currentURL != storeURL {
try NSPersistentStoreCoordinator.destroyStore(at: currentURL)

}
}

So at this point the old store is ready to be migrated, we’ve figured out what the current store
version is, and we know how to migrate from the current version to the destination version.

To do this, we’ll need to loop over the array of migration steps that we just created, and we’ll
apply each step by calling executeMigrationStep(_:on:).

Here’s what that method looks like:

Donny Wals 309

Practical Core Data

// This method is defined in the CoreDataMigrator class
private func executeMigrationStep(_ step: MigrationStep, on source:

URL) throws -> URL {↪→

let manager = NSMigrationManager(sourceModel: step.sourceModel,
destinationModel:

step.destinationModel)↪→

let destination = URL(fileURLWithPath: NSTemporaryDirectory(),
isDirectory:

true).appendingPathComponent(UUID().uuidString)↪→

try manager.migrateStore(from: source, sourceType:
NSSQLiteStoreType, options: nil, with: step.mappingModel,↪→

toDestinationURL: destination,
destinationType: NSSQLiteStoreType,↪→

destinationOptions: nil)

return destination
}

Since we only determine the steps that Core Data must take to migrate our store, but leave
performing eachmigration step up to Core Data, we can use Core Data’sNSMigrationMan-
ager to perform the migration on our behalf. The initializer for NSMigrationManager
takes the source and destination model that are defined on MigrationStep.

The next step is to create a temporary store at a destination URL. This will allow us to easily
discard this store since it’s only used as an intermediary step. A�er we’ve performed the last
migration step, we’ll copy our last temporary store over to the original store’s location.

This allows us to isolate the individual steps throughout the migration process which avoids
data loss in the source store. We don’t remove or replace the source store until all migration
steps are performed.

The last step is to ask the manager to migrate the store from the source to the destination
with the mapping model that we created earlier.

A�er performing the migration I return the destination URL that was generated so we can use

Donny Wals 310

Practical Core Data

it back in migrateStore(at:to:).

Back in the for loop in migrateStore(at:to:), I check whether the currentStore
property is equal to storeURL. If this is not the case, I destroy the store at currentURL.
A�er this check, I set currentStore to the migratedStoreURL that was returned by
executeMigrationStep(_:on:).

The first time this loop runs, currentURLwill be set to the original store’s URL whichmeans
that we won’t destroy the store a�er the first migration step.

When this loop runs for the second time, currentStorewill be set to the first temporary
store we created. Since we have created a second temporary store, we no longer need the
first store so it can be removed.

A�er that, currentStore is set to be equal to the store URL that was returned by exe-
cuteMigrationStep(_:on:) for the secondmigration step.

This process repeats until all steps are performed.

Once all steps are performed, I call replaceStore(at:withStoreAt:) on NSPer-
sistentStoreCoordinator. This will replace the original persistent store with the last
temporary store we created since this is the fully migrated version of the original persistent
store.

A�er doing this, I check if currentURL and storeURL aren’t the same to decide whether I
should delete the last temporary store that exists at currentURL. In the event that we have
no migrations to perform, we shouldn’t delete the store at currentURL since that would
delete our up-to-date persistent store because currentURL points to the current store by
default.

Note that replaceStore(at:withStoreAt:) and destroyStore(at:) are both
defined in an extension on NSPersistentStoreCoordinator to make replacing and
deleting a store a bit easier:

extension NSPersistentStoreCoordinator {
static func destroyStore(at storeURL: URL) throws {
let persistentStoreCoordinator =

NSPersistentStoreCoordinator(managedObjectModel:
NSManagedObjectModel())

↪→

↪→

try persistentStoreCoordinator.destroyPersistentStore(at:
storeURL, ofType: NSSQLiteStoreType, options: nil)↪→

Donny Wals 311

Practical Core Data

}

static func replaceStore(at targetURL: URL, withStoreAt sourceURL:
URL) throws {↪→

let persistentStoreCoordinator =
NSPersistentStoreCoordinator(managedObjectModel:
NSManagedObjectModel())

↪→

↪→

try persistentStoreCoordinator.replacePersistentStore(at:
targetURL, destinationOptions: nil,↪→

withPersistentStoreFrom: sourceURL, sourceOptions: nil,↪→

ofType:
NSSQLiteStoreType)↪→

}
}

You saw a lot of code in this section, so I understand if you feel like you’ll need to go over this
section a couple more times to fully understand it.

I have added the full CoreDataMigrator code that you just saw to this chapter’s code
bundle, and I’ve added documentation comments to each method that’s used. That way, you
can browse the code and get a good sense of what each part does, without having to read
through the full text of this section every time.

At the beginning of this section, I mentioned that step-by-step migrations are more expensive
than having Core Data perform yourmigrations in a single step. The reason for this is that Core
Data will have to load your managed object multiple times in a step-by-step migration. More
importantly, Core Data might have to load every record in your persistent store into memory
to migrate it from one version to the next if it can’t use inferred migrations.

If you find that a particular set of migration steps is very slow, it might make sense to perform
multiple migrations in one step, similar to how Core Data does this. Or if you know that Core
Data can infer a mapping model for several of your versions, it might make sense to use this
to your advantage.

You can do this bymodifying how you implementnext() on your ModelVersion enum.

Donny Wals 312

Practical Core Data

For example, if I have migrated mymanaged object model four times, and all of these migra-
tions were automatically inferred migrations, I could write next() as follows:

func next() -> ModelVersion? {
switch self {
case .v1: return .v4
case .v2: return .v4
case .v3: return .v4
case .v4: return .v5
case .v5: return nil
}

}

This will cause ourmigration to jump directly to version 4 if the current store version is v1, v2,
or v3. That saves us several migration steps so it’s definitely worth tweaking your next()
version to be as e�icient as you can make it. Especially when Core Data can infer several
migrations in a row.

Now that you have this whole custommigrator built, you’ll want to make sure that you verify
that everything works as intended. Ideally, you would evenmake sure that when you run your
migrations everything works as expected.

The best way to validate and test that your migrator works as intended is to write some
automated tests that migrate your data model through each of your migration steps.

Writing tests for your step-by-step
migrations
Throughout this section, I will assume that you have some basic knowledge about XCTest,
and that you know the basics of unit testing itself.

In this section, I will show you how you can obtain SQLite stores from a device or simulator to
use in your tests. You will then learn how you can use these stores in a test suite.

Donny Wals 313

Practical Core Data

Obtain SQLite files from devices and simulators

To write a test that migrates a store from one version to the next, you’ll need a store that is
at the version that you want to test your migration for. So for example, if you want to test
a migration from your first model version to the second, you should get your hands on an
SQLite store that’s at your first model version.

Usually, you’ll want to grab these stores before you add a newmodel version to your Core Data
model. Obtaining a correct store a�er you’ve already migrated is much more complicated
because you might have made significant changes to your code as well as your data model so
rewinding to an older store version would be a non-trivial exercise.

To obtain an SQLite store from a device that runs your app, you can connect your device to
Xcode and open the Devices and Simulatorswindow (Window -> Devices and Simulators).
Select your device and find your app. With the app selected, click on the cog symbol and
choose Download Container.. . .

Figure 53: The Devices and Simulators window

Donny Wals 314

Practical Core Data

This will download your app’s private storage to your device, allowing to inspect it, and to
extract the SQLite store that’s used by Core Data.

Xcode will grab an .xcappdata file from your device. To open this file, right-click it and
choose Show Package Contents. A�er doing this, you will see the folders that are inside of
the.xcappdata file, and you can freely browse the files. The default location for Core Data’s
SQLite file is App Data -> Library -> Application Support.

Figure 54: The location of the SQLite file

You’ll find that there are usually two files that exist alongside your .sqlite file. These files
are used for some of SQLite’s features like write-ahead logging. When you want to use your
.sqlite file in your unit tests, you’ll need to copy all three files to your unit test target.

Before I go into your unit test target, I want to show you the easiest way to extract an SQLite
file from the simulator.

First, you’ll want to edit your app target’s scheme. You can do this by clicking the active
scheme next to Xcode’s play button, and selecting Edit Scheme...

Donny Wals 315

Practical Core Data

Figure 55: The edit scheme. . . button

This will open the scheme editor.

To easily find your store’s SQLite file, we’re going to use a launch argument that’s normally
used to help with debugging Core Data. You’ll learnmore about this argument in Chapter 10 -
Debugging and profiling your Core Data implementation. For now, just go a head and add
the following launch argument:

-com.apple.CoreData.SQLDebug 1

Here’s what your scheme should look like:

Donny Wals 316

Practical Core Data

Figure 56: App scheme with the debug launch argument set

A�er adding this launch argument, run your app. The first thing that’s printed to the console
is the location of your SQLite store for the simulator. For example:

CoreData: annotation: Connecting to sqlite database file at
"/Users/donnywals/Library/Developer/CoreSimulator/Devices/730CBAE8-
B040-4CD2-8224-
6276213188B6/data/Containers/Data/Application/DD41C13D-5EC6-4C1B-
88C0-5120D8EBDE56/Library/Application
Support/Chapter9.sqlite"

↪→

↪→

↪→

↪→

↪→

To copy the SQLite file, navigate to the printed path and take the three files that you’ll find
there. These are the same sqlite, wal, and shm files that you saw in your device’s app
container.

If you have an SQLite database reader like DB Browser for SQLite installed on your machine,
you can open your SQLite file in that reader and then close it again. Virtually all database
readers I’ve used will merge the wal and shm files into the .sqlite file. This will leave you
with a single .sqlite file that can function on its own.

Donny Wals 317

Practical Core Data

Adding a test target and verifying amigration

Assuming you don’t have a test target for your app (or framework) yet, you’ll need to add one.
Go to your project settings, click the + icon under the Targets section and add a Unit Testing
Bundle. Make sure the bundle tests your app or target, and give it a name.

Grab the SQLite files you copied earlier, and drag them all to your test target in Xcode. You can
create a new group for them if you’d like. Make sure their target membership is set to your
unit test target.

You’re now ready to start writing your first migration test.

I like to write a base class for all migration tests that I write in my project. This base class will
make it eaiser to share some functionality.

Here’s the full file for my base class:

import XCTest
import CoreData
@testable import StorageProvider

class MigrationTest: XCTestCase {
let bundle = Bundle(for: MigrationTest.self)

func prepareStore(using source: String) throws -> URL {
let sourceURL = bundle.url(forResource: source, withExtension:

".sqlite")!↪→

let destination = URL(fileURLWithPath: NSTemporaryDirectory(),
isDirectory:

true).appendingPathComponent(UUID().uuidString)↪→

try FileManager.default.copyItem(at: sourceURL, to: destination)

return destination
}

}

Notice how I use @testable to import StorageProvider. The @testable annotation

Donny Wals 318

Practical Core Data

is a special way to import an app or framework, allowing you to access internal methods
instead of only public methods on the app or framework.

The prepareStore(using:) takes an SQLite store and copies it to a temporary location.
This will allow us to migrate the SQLite store that exists at the temporary location from its
current version to any other version. We need to copy the store to a temporary location
because we don’t want to overwrite the store that we added to the bundle.

Let’s create our first test class:

class Migratev1Test: MigrationTest {
func testv1Tov2Migration() throws {
// migrate a single step

}

func testv1ToCurrentMigration() throws {
// we'll migrate v1 to whatever the current version is

}
}

Don’t forget to import CoreData, your app, and XCTest if you’re adding this test class to a new
file.

We’ll start with the smallest migration. We’ll migrate from version 1 to version 2.

The first step is to set up an NSPersistentContainer and a CoreDataMigrator:

func testv1Tov2Migration() throws {
let storeURL = try prepareStore(using: "version1")
let mom = try NSManagedObjectModel.managedObjectModel(forResource:

ModelVersion.v2.rawValue,↪→

in: Bun-
dle(for:
Storage-
Provider.self))

↪→

↪→

↪→

let container = PersistentContainer(name:
"Chapter9",managedObjectModel: mom)↪→

Donny Wals 319

Practical Core Data

container.persistentStoreDescriptions.first!.url = storeURL
con-

tainer.persistentStoreDescriptions.first!.shouldMigrateStoreAutomatically
= false

↪→

↪→

}

We obtain a storeURL by calling prepareStore(using:). This method copies the
source SQLite file and returns its new, temporary, location.

Next, I load amanaged objectmodel for themodel version that I want tomigrate to. To do this,
we can use the helper that was added to NSManagedObjectModel in the previous section.
Note that I pass Bundle(for: StorageProvider.self) as the bundle to load from
since the managed object model is part of my framework. You might want to use a class from
your app to find the Bundle if you don’t have your Core Data stack wrapped in a framework
like I have.

The next steps are to set up apersistent container, use thestoreURL as theURL for the persis-
tent store description, and set its shouldMigrateStoreAutomatically to false.

All that’s le� to do now, is run the migration and see if it works:

func testv1Tov2Migration() throws {
// Setup code...

let migrator = CoreDataMigrator(container: container)
try migrator.migrateStoresIfNeeded(to: .v2)

}

In this code, I create an instance of CoreDataMigrator and I call migrateStore-
sIfNeededwith a specific model version. In this case, version 2.

This will run the migrator and if any errors are thrown, the test will fail.

While this is great, you might want to perform some validation on the data a�er the migra-
tion.

Keep in mind that your managed object subclasses could be based on your fourth model
version at this point. This means that we can’t query Core Data with our managed object

Donny Wals 320

Practical Core Data

subclasses at this point. Instead, we’ll use NSManagedObject and value(forKey:) to
extract and validate di�erent values.

The following code finalizes the initialization of the persistent container by loading the persis-
tent store, and it shows how you can query the database for a migrated object:

func testv1Tov2Migration() throws {
// Setup code...
// The migration...

container.loadPersistentStores(completionHandler: { _, error in
XCTAssertNil(error)

})

let request = NSFetchRequest<NSManagedObject>(entityName: "Album")
request.predicate = NSPredicate(format: "artist == %@",

"Architects")↪→

let albums = try container.viewContext.fetch(request)

XCTAssert(albums.count == 1)
}

The code above should speak for itself. I create a fetch request for the Album entity that
retrieves NSManagedObject instances. The predicate that’s applied to the request extracts
all records where the artist value is equal to Architects.

I happen to know that this record existed in my original store. This means that it should be
possible to extract that record from themigrated store as well.

Since I know that there’s only a single record in my original store for this artist, I asert that
there’s a single result.

You can take this validation a step further by validating the full object. While I wouldn’t
recommend doing this for all records in your source store, it’s a good idea to do this for one or
two to make sure that no data loss occurred due to a mistake in your mapping.

I like to do this by adding some handy extensions to my MigrationTest base class. In
this case, I’d add a validateAlbumv2(_:using:)method. This method will compare a

Donny Wals 321

Practical Core Data

managed object to an instance of a helper struct that’s defined in the test suite to make sure
that all fields have the correct value.

Here’s the helper struct:

struct Albumv2 {
let artist: String
let title: String
let genre: String
let listeningNotes: String
let releaseDate: Date
let albumCover: Data?

}

It’s essentially a copy of theAlbummanaged subclass that has all the properties that a version
2 Album should have. You can create a new struct for eachmodel version to make sure you
can create a helper for eachmodel version you create.

Here’s how I validate this struct in validateAlbumv2(_:using:):

extension MigrationTest {
func validateAlbumv2(_ managedObject: NSManagedObject, using album:

Albumv2) throws {↪→

let artist = try XCTUnwrap(managedObject.value(forKey: "artist")
as? String)↪→

XCTAssertEqual(artist, album.artist)

let title = try XCTUnwrap(managedObject.value(forKey: "title")
as? String)↪→

XCTAssertEqual(title, album.title)

let genre = try XCTUnwrap(managedObject.value(forKey: "genre")
as? String)↪→

XCTAssertEqual(genre, album.genre)

let listeningNotes = try XCTUnwrap(managedObject.value(forKey:
"listeningNotes") as? String)↪→

Donny Wals 322

Practical Core Data

XCTAssertEqual(listeningNotes, album.listeningNotes)

let releaseDate = try XCTUnwrap(managedObject.value(forKey:
"releaseDate") as? Date)↪→

XCTAssertEqual(releaseDate, album.releaseDate)

let albumCover = managedObject.value(forKey: "albumCover") as?
Data↪→

XCTAssertEqual(albumCover, album.albumCover)
}

}

This code is quite straightforward. It simply extracts each property using value(forKey:),
casts it to the appropriate type and compares it to the value on the struct. If a value doesn’t
match, the test fails. Simple enough.

It’s used in a test as follows:

func testv1Tov2Migration() throws {
// Setup code...
// The migration...
// Basic validation...

let album = Albumv2(artist: "Architects", title: "Holy Hell",
genre: "metalcore", listeningNotes: "awesome

stuff",↪→

releaseDate: Date(timeIntervalSince1970:
1608664864),↪→

albumCover: nil)

try validateAlbumv2(albums.first!, using: album)
}

This test relies on you knowing what’s in the SQLite store that’s used in your test. If you’re not
sure, use a database reader to open and browse your SQLite file so you can base your tests on
the data in your store.

Donny Wals 323

Practical Core Data

The validation I’m showing you here is fairly simple. Of course, you can take validation much
further, or you can settle for knowing that your store can go through a certain migration step
without errors.

As an example, let’s took a look at a very superficial test that checks whether we canmigrate
the version 1 store all the way to the fourth model version that I created in the previous
section:

func testv1ToCurrentMigration() throws {
let storeURL = try prepareStore(using: "version1")
let container = PersistentContainer(name: "Chapter9")
container.persistentStoreDescriptions.first!.url = storeURL
con-
tainer.persistentStoreDescriptions.first!.shouldMigrateStoreAutomatically
= false

↪→

↪→

let migrator = CoreDataMigrator(container: container)
try migrator.migrateStoresIfNeeded(to: .current)

}

This test will migrate the a store from version 1 all the way to the current model version. That’s
v4 in this case. Note that I didn’t have to load amanaged objedtmodel explicitly. We can allow
the StorageProvider to use its default setup process that will use the current model version as
its managed object model by default. We’re migrating to the current model a�er all.

If one of our migration steps doesn’t work, we’ll find out in this test. It migrates the store from
version 1 to version 2, then to version 3, and lastly to version 4. I would recommend doing
some data validation in this migration as well, but I’ll leave that as an exercise for you.

It’s always up to you to decide how rigorous you want to test. You can test whether your
migration works from version 1 to a non-current version like version 3, or you can decide that
you only care about testing migrations to the current version. A�er all, no users will update
their app andmigrate to an old version of the store. Theywill alwaysmigrate from their current
model version to the latest model version.

For that reason, I think it’smost important to test that you canmigrate from anymodel version
to the latest model version without problems. Anything in between is tested implicitly, and
not relevant to test explicitly.

Donny Wals 324

Practical Core Data

But of course, you’re free to write all the tests you want. Just remember that more is not
always better.

In Summary
This chapter covered the full spectrum of migrations in Core Data. You saw how Core Data can
automatically infer changes between twomanaged object model versions andmigrate your
underlying store for you. You learned that if your migration is simple enough, Core Data will
perform this migration by executing statements on your SQLite store directly if applicable.

Next, you saw that you can provide Core Data with some hints about your model mapping
if needed. You saw how this can be useful when you change a property in your model to a
relationship.

A�er that, we took it one step further by defining a custom entity migration policy. You used
this policy to establish a relationship between an artist and an album based on the album,
while making sure that you don’t create duplicate artist instances based on their name.

You also learned that Core Data will always attempt to migrate your store in one go. This
means that you might need to provide mapping models and migration policies from one
version to several other versions if needed. For example, you learned that youmight need to
define a mapping model for version 1 of your model to version 2, version 3, and version 4. As
you can imagine, this is tedious and error-prone.

For that reason I showed you how you can take control of how Core Data migrates your
persistent store by performing a step-by-step migration. This kind of migration’s performance
is not nearly as e�icient as that of a migration that is performed in one step, but as long as
your model changes are simple, a step-by-step migration could be fine.

Lastly, you learned how you can validate and test your step-by-stepmigrations using XCTest
and dummy SQLite stores.

In the next chapter, you will learn more about profiling and debugging your Core Data store.

Donny Wals 325

Practical Core Data

Chapter 10 - Debugging and profiling your
Core Data implementation
When you’re working with Core Data, there are several ways for you to keep an eye on the
performance and potential bottlenecks of your Core Data usage.

Throughout this book, I have already mentioned several optimizations like setting your fetch
request’s batch size, I’ve explained faulting, I explained that you should use batch opera-
tions if possible to reduce your memory footprint, and I’ve even shown you how resetting
a managed object context a�er a heavy data import can reduce your app’s memory usage.
I’ve also told you about the relationshipKeyPathsForPrefetching and return-
sObjectsAsFaults to help you tune your Core Data usage depending on where data is
displayed.

In this chapter, youwill seemost of these performance-sensitive enhancementsmake another
appearance. You will learn how you canmeasure and profile your app to help you improve
performance, and discover bugs.

This chapter covers the following topics:

• Measuring and improving performance with Instruments
• Peeking under the hood with launch arguments

By the end of this chapter, you will know exactly where to start hunting for performance gains
in a Core Data-based application.

Measuring and improving performance
with Instruments
The key to improving any application’s performance is measuring and analyzing. You can’t
improve performance until you’ve measured the current state of your implementation.

Of course, there are obvious performance hits and sometimes there are easy fixes for these
performance hits. But if you want to analyze your application beyond the obvious, you need

Donny Wals 326

Practical Core Data

data.

You’ll want to be able to verify that the modifications you make to your code have the in-
tended e�ect. Andmost importantly, you’ll want to verify that your modifications don’t hurt
performance elsewhere.

I highly recommend that you keep an eye on your app’s performance regularly by running it
through Instruments. Instruments is by far the best and easiest way to gain insight into your
app’s performance, and it has several dedicated templates to help you troubleshoot specific
features, frameworks, and scenarios.

There’s even a dedicated Instrument for Core Data applications.

Even if you keep an eye on performance, sub-optimal code can find its way into your codebase.
You’ll typically notice that your UI starts to stutter, or that your app’smemory usage has grown
explosively.

There can bemany reasons for this, Core Data is just one of the potential reasons. Instead of
making changes all over your app, rolling back commits, and deleting code that you think
might perform badly, it’s better to measure your app.

Try to pinpoint the problem before you attempt to fix it.

That way, any changes you make to your code can be measured, and you’ll know exactly how
much impact your changes have.

In this section, I will show you how you can use Instruments to troubleshoot an app that runs
slowly due to poor Core Data usage. You will see how you can use techniques that I have
discussed throughout the book to fix these problems and improve the sample application
that is part of this chapter’s code bundle.

The application in this chapter’s code bundle is the same app that you built in Chapter 9 -
Updating your datamodel and performingmigrations. The di�erence is that the app will
now import a large number of albums into the Core Data store on the app’s first launch.

While there are several improvements to be made, I’m going to be focussing my e�orts on the
Swi�UI version of the project.

Go ahead and open this chapter’s workspace and run the app.

If possible, run the app on a real device. When you’re profiling performance you want to run
your app on a device rather than the simulator because the simulator has the full power of
your mac backing it.

Donny Wals 327

Practical Core Data

You’ll find that nothing happens for a while. You’ll see a bunch of print statements and
eventually, you’ll see the following message:

"Imported everything, will save now"

A�er this is printed, nothing happens. Until a�er a couple of seconds you see this message:

"Updating view context"

Shortly a�er seeing that message, the UI should update and the batch of imported albums
should be visible.

You’ll notice some duplicate entries in the UI. That’s because the web API that I used to source
these albums contains some albums with duplicate names and images. There’s no mistake in
the importer, it’s just how the imported data was structured.

When the UI finally becomes responsive, try scrolling through the list of albums. You’ll notice
that scrolling isn’t super smooth, and your app’s memory usage is rising rapidly.

The rest of the app works fine, so we’re o� to a good start. But as you’ll soon find out, we can
(and should) make some improvements to this app. Both in terms of how fast our import is,
and in terms of how fast our UI loads.

Note: If you’re running this app in the simulator, you’ll find that the Album detail page
responds very slowly to tapping the Edit and Add note buttons. This isn’t the case when
you run the app on a device. Quirks like these are the most important reason to test your
app on a device. The simulator does not always do a good job of running your apps as
they would run in the real world.

Before we start making changes to our app, we should take somemeasurements. We want to
knowwhat’s going on beforewe start making changes.

A good place to start is usually Instruments.

Make sure you delete the app from your device before profiling to make sure we start with a
clean slate (and so the importer will run again.)

Hit cmd+i or select Product -> Profile.. from themenu to build your app and launch Instru-
ments.

Donny Wals 328

Practical Core Data

When Instruments opens, select the Core Data Instruments template and click Choose to
open a new Instruments session.

Figure 57: The template selection window

Instruments will open with three lanes:

• Core Data Faults
• Core Data Fetches
• Core Data Saves

These three lanes will tell us exactly what you would expect. When Core Data fulfills a fault,
we’ll see this in the Faults lane, any fetches will show up in the fetches lane, and saves will
show up in the saves lane.

Donny Wals 329

Practical Core Data

Figure 58: The Core Data Instruments template

To run your app with Instruments attached, hit the record button in the top le� corner.

When you run your app for the first time, and the importer runs you’ll notice that you end up
with an Instruments log that looks a bit like this:

Donny Wals 330

Practical Core Data

Figure 59: The initial Instruments log

The big blue bar that you see is a single huge save operation. The save starts about 15 seconds
into our import process which makes sense because we’re downloading a bunch of images
from the web, and we don’t save until all images are loaded.

The fact that this save takes 25 seconds is a little worrying though. What could be going on?

To find out, we can use the Time Profiler instrument. Click the + icon in the top right of the
Instruments window and look for the Time Profiler. Double click the time profiler to add
it to your session, delete your app from your device and go back to Xcode. Press cmd+i or
selectProduct -> Profile.. again to reinstall your app and open it in Instruments. Your existing
Instruments session will be reused.

Click the record button again and wait for the import to complete.

Select the Time Profiler lane, you should see a result that looks a bit like this:

Donny Wals 331

Practical Core Data

Figure 60: The result of running the importer with the Time Profiler

Two things jump out for me.

First, we spend about 11.89 seconds in UIImageTransformer.transformedValue.
Second, we spend about 100ms in UIImage.init(data:).

These 100ms aren’t the end of the world, but it’s the third thing we spend the most time on.
It’d be great if we canmake some improvements there while we’re at it.

If we can get rid of the need to transformdata, we could reduce the time it takes to import data
by at least 11.89 seconds since that’s the time we currently spend on transforming data.

To be specific, it takes 11.89 seconds to transform our album covers from UIImage to Data.
We spend about 100ms on transforming Data to UIImage.

There are multiple ways for us to resolve this issue.

The first solution involves a pretty sizeable refactor where we don’t store images in Core Data
anymore. Instead, we would write our images to the app’s documents directory and we’d only
store the path to the stored file in the database.

Donny Wals 332

Practical Core Data

This refactor is lightweight from a Core Data perspective, but it does mean that we need to
access the filesystem to load each image when we’re using our Album instances in the app.
We could perform this load lazily, and we could use a cache that we can clear as needed to
keep our app’s memory footprint small.

The second solution isn’t as elegant, but it’s a lot easier to implement.

We would refactor Album so it stores its cover as binary data rather than a transformable.
This would allow us to assign the downloaded image data to the album object directly, and
we can convert the data to an image using a lazy variable on Album.

This approach would allow us to convert the image data to a UIImagewhen needed, and it
would save us a lot of overhead that we incurred from the transformable.

Both solutions have their merit.

The first is harder to implement but has bigger potential gains. The second is easier to imple-
ment but it’s less e�icient because itmeanswe’ll always load all imagedata intomemorywhen
Core Data fulfills an Albumfault, making it harder to reduce the app’s significant memory
footprint.

There are other solutions to this problem. For example, you could store the image as binary
data on a new entity that’s accessed as a relationship on Album. This approach is similar to
storing the image in the documents directory except everything is kept in Core Data.

Before we refactor anything, there’s one lesson that I hope you’ve already learned.

Storing images in a Core Data store with transformable is very expensive, especially when
you’re saving a large number of records.

Because I firmly believe that the first refactor option I proposed is the best, and will scale
much better than its less sophisticated alternative, we’re going to implement the first option
to see what performance gains we can achieve.

There will be one shortcut though; I’m not going to implement a caching solution.

Instead, I will load and decode aUIImage instance from the data that’s stored on disk directly
on the main thread, and I will not use any form of caching. In the sample app for this chapter,
this works just fine. In a real app, I would recommend that you make the decoding of the
image asynchronous and that you back it up with a cache to make sure everything loads as
snappy as possible even when resources are tight.

Donny Wals 333

Practical Core Data

InChapter 9 -Updating your datamodel andperformingmigrations, you learned howyou
can write migrations for your store, and the refactor that we’re about to do would require a
migration if you’re refactoring an app that’s already in production. If you’re doing a refactor
on the initial non-released version of your app a reinstall would work fine.

In the optimized version of this chapter’s code, I have included amigration to migrate from
the current situation to the new situation.

Feel free to examine this migration to see how it works, I’m not going to cover it in this chapter
though since it’s not really relevant; we’re going to delete and reinstall the app anyway to see
if our improvements are e�ective.

The first change to make is adding a newmodel version. If you’re doing a refactor like this on
the first development version of your app you canmake changes to the existing data model
and reinstall the app. Remember that you should always make a newmodel version if you
already have a version of your app on the App Store.

In my newmodel version, I’ve renamed the albumCover property to albumCoverPath
and it’s a String. I’ve made the attribute optional in the inspector because not every album
will have a cover assigned if it’s added by an end-user.

Next, I’ve added the following computed property to my Albummanaged object subclass:

public var albumCover: UIImage? {
guard let path = albumCoverPath else {

return nil
}

let documentsDirectory = FileManager.default.urls(for:
.documentDirectory,↪→

in: .userDomain-
Mask).first!↪→

let url = documentsDirectory.appendingPathComponent(path)
guard let data = try? Data(contentsOf: url) else {

return nil
}

return UIImage(data: data)

Donny Wals 334

Practical Core Data

}

You can add this computed property in an extension, but you could also define your managed
object subclass by hand and add it in the class declaration directly.

Note that I don’t apply any caching or asynchronous loading here. In this case, the app runs
fine and there’s no significant CPU overhead when I profile this implementation. However, I
would recommend that in a real-world application you play it safe and implement a caching
layer and asynchronous loading to prevent blocking themain thread while performing file
I/O.

In this computed property you can already see that we’re only storing file names in our Core
Data store, and that we fetch images from the document directory. I don’t store full paths in
Core Data because the location of the documents directory is not guaranteed to be stable. Its
contents should be stable though, so we can store and use the filename without problems.

As a convenient way to set the album cover on Album I’ve also added a helper method:

public func setAlbumCover(_ image: UIImage) {
guard let jpeg = image.jpegData(compressionQuality: 1) else {
return

}

let documentsDirectory = FileManager.default.urls(for:
.documentDirectory,↪→

in: .userDomain-
Mask).first!↪→

if let oldFile = albumCoverPath {
let oldPath =

documentsDirectory.appendingPathComponent(oldFile).path↪→

if FileManager.default.fileExists(atPath: oldPath) {
try? FileManager.default.removeItem(atPath: oldPath)

}
}

Donny Wals 335

Practical Core Data

let path = "\(UUID().uuidString).jpeg"

let url = documentsDirectory.appendingPathComponent(path)
do {

try jpeg.write(to: url)
albumCoverPath = path

} catch {
albumCoverPath = nil
print(error)

}
}

This method can be added as an extension to Album or you can add it to the class directly.
It allows you to set the cover image using a UIImagewhich is very convenient for the app
itself. If needed, this method deletes the old cover image. The new image is stored using a
new UUID, and this UUID is used as the new albumCoverPath.

The current implementation of the importer sets the coverImage on Album directly. We’ll
need to change this so the importer stores the cover image in the documents directory and
sets the coverImagePath appropriately.

We could simplify this change and callsetAlbumCover(_:) from the importer. This would
mean that we need to decode the downloaded image data into a UIImage and then back to
a jpeg representation. That seems rather wasteful so it’s better to store the file directly and
assign the coverImagePath from the importer.

The following code should replace the URLSession related code on line 56 in the original
InitialImporter:

return URLSession.shared.dataTaskPublisher(for: URL(string:
albumInfo.albumCover)!)↪→

.map(\.data)

.tryMap({ data in
let documentsDirectory = FileManager.default.urls(for:

.documentDirectory,↪→

in: .userDo-
main-
Mask).first!

↪→

↪→

Donny Wals 336

Practical Core Data

let path = "\(UUID().uuidString).jpeg"

let url = documentsDirectory.appendingPathComponent(path)
try data.write(to: url)
album.albumCoverPath = path

return album
})
.replaceError(with: album)
.eraseToAnyPublisher()

This code does roughly the same as the code that you just saw in the setAlbumCover(_:)
method. If anything goes wrong while loading the image we just return the albumwithout
setting its albumCoverPath.

If you attempt to run the sample app a�ermaking these changes you’ll run into some compiler
issues. These issues will be related to assigning an image to coverImagewhich is no longer
possible. Replace these assignments with calls to setAlbumCover(_:).

When running the importer with Instruments a�er making these changes you’ll notice that
the performance of the importer has increased drastically:

Donny Wals 337

Practical Core Data

Figure 61: The improved importer is much faster

We no longer spend nearly 12 seconds on image processing, which is obviously a huge win.

If you paid attention to the app’s memory graph while scrolling all the way to the bottom
you’ll have noticed that the app used over a GB of memory in the original implementation.

Donny Wals 338

Practical Core Data

Figure 62:Memory usage before the optimizations

If you were okay with the slow import, I hope that this kind of memory usage at least made
you a little bit nervous.

The reason the app used somuchmemory was that all transformed images were being kept in
memory. So once you’ve scrolled to the bottom, the app will have over 500 fully materialized
images in memory. That’s not great.

By making albumCover a computed property, we don’t have to keep the image in memory
all the time. In fact, only the images that are visible to the user are kept in memory.

This change results in drastically lower memory consumption. Onmy device, the app uses a
little over 100MB at its peak.

Donny Wals 339

Practical Core Data

Figure 63:Memory usage a�er the optimizations

Thismemory is still a little bit more than I’d like but there’s notmuchwe can do at this point. A
big win would be to use smaller images. The images that I’ve downloaded in the importer are
640x640 pixels. We show the images at roughly 85x85 points so even if we account for retina
displays we could work with images that are about half the size of what I’m using now.

There’s one more thing that I want to show you. When you look at the Core Data Fetches lane
in Instruments, you’ll notice that there’s a single fetch for 542 items.

Donny Wals 340

Practical Core Data

Figure 64: The fetch lane

As you scroll you’ll see that we fire a lot of faults and relationships.

Each relationship requires a new trip to the underlying store to retrieve the object that the
relationship points to.

In other words, all Album records are fetched in one go. Their faults are fulfilled as you scroll,
and the Artist and ListeningSession relationships are fetched as needed. You can
see this by selecting the faults lane and selecting the Relationship Faults tab.

Donny Wals 341

Practical Core Data

Figure 65: The Relationship Faults tab

In chapter Chapter 4 - Fetching and displaying data from a Core Data store you learned
about relationshipKeyPathsForPrefetching and fetchBatchSize.

I explained that you can use these properties to limit the amount of extra ad-hoc fetching
that needs to be done for relationships, and to limit the number of items that are fetched
immediately.

Make the following change to the static byArtistAndNameRequest property that’s de-
fined on Album:

public static var byArtistAndNameRequest: NSFetchRequest<Album> {
let request: NSFetchRequest<Album> = Album.fetchRequest()

request.sortDescriptors = [
NSSortDescriptor(keyPath: \Album.artist.name, ascending: true),
NSSortDescriptor(keyPath: \Album.title, ascending: true)

]

Donny Wals 342

Practical Core Data

request.fetchBatchSize = 15
request.relationshipKeyPathsForPrefetching = [

#keyPath(Album.listeningSessions),
#keyPath(Album.artist)

]

return request
}

This code sets the batch size to fi�een and ensures that the listening sessions and artists are
fetched immediately along with the albums.

This means that we’ll fetch a larger amount of data in each batch, but we’ll have no extra
fetching todowhile theuser scrolls through the app. Thiswill help improve scroll performance,
and by loading albums in batches of fi�een, each fetch should be relatively small.

When running theapp through Instrumentswith these changes inplace you’ll see the following
information in the fetches lane:

Donny Wals 343

Practical Core Data

Figure 66: The fetches lane with batch size and relationship prefetching in place

A keen eye will notice something odd about this graph.

There’s still a fetch request for 542 items! And not just that, there are a lot of requests for 15
items in the graph.

Some of these requests are expected; I scrolled a bit when I profiled my app. But there
shouldn’t be nearly as many fetch requests as we’re seeing. The app seems worse o� with the
optimizations wemade. We fetch all items, and then we fetch them again in batches of fi�een.
And then we fetch them again when they are needed while scrolling.

To seewhat’s happening here, we’ll need to take a look atwhat’s happening behind the scenes.
Time to take a look at the raw SQLite queries that Core Data performs against the underlying
SQLite store.

Donny Wals 344

Practical Core Data

Peeking under the hoodwith launch
arguments
While Instruments is a fantastic tool to help you profile your app by showing you exactly what
Core Data is doing, there are times when you needmore insight.

For example, when you see a fetch request for a certain entity and you wonder what’s being
fetched exactly. Or if you want to debug what’s being stored in your Core Data store because
you’re seeing unexpected results.

Theeasiestway to takea lookunder thehoodand seewhichSQLitequeriesCoreDataperforms
is to run your app with the Core Data debug launch argument.

I already showed you this launch argument in Chapter 9 - Updating your data model and
performingmigrations. You add the launch argument to your app’s Run scheme. To refresh
your mind, here’s what the launch argument looks like:

-com.apple.CoreData.SQLDebug 1

When you enable this launch argument, Core Data will print information about what it’s doing
to the console. You used this launch argument to find the simulator’s SQLite file earlier. You
can also use this argument when you run the app on a device.

The Core Data debug launch argument can be configured to log at several levels. Level one is
the lowest level and prints only the SQLite queries that are executed. For example, when I
launch this chapter’s sample app, the following output is printed:

CoreData: annotation: Connecting to sqlite database file at
"/var/mobile/Containers/Data/Application/6389B011-7160-4EF5-AE35-
A8D19D03911B/Library/Application
Support/Chapter9.sqlite"

↪→

↪→

↪→

CoreData: sql: SELECT TBL_NAME FROM SQLITE_MASTER WHERE TBL_NAME =
'Z_METADATA'↪→

more logs....
CoreData: sql: SELECT 0, t0.Z_PK FROM ZALBUM t0 LEFT OUTER JOIN

ZARTIST t1 ON t0.ZARTIST = t1.Z_PK ORDER BY t1.ZNAME, t0.ZTITLE↪→

Donny Wals 345

Practical Core Data

CoreData: annotation: sql connection fetch time: 0.0005s
CoreData: annotation: total fetch execution time: 0.0006s for 542

rows.↪→

more logs....

I have omitted most of the output and only kept some of the more interesting bits. There’s a
lot of output on this screen because you can see every single query that’s executed by Core
Data. There’s one for each relationship that we wanted to prefetch, so you can imagine that
there’s a lot to look at.

In the snippet above, I have kept the SQLite query that stood out in Instruments. It’s the query
that returned 542 rows. Here’s what the query looks like. Pay close attention to the SELECT
part:

SELECT 0, t0.Z_PK FROM ZALBUM t0 LEFT OUTER JOIN ZARTIST t1 ON
t0.ZARTIST = t1.Z_PK ORDER BY t1.ZNAME, t0.ZTITLE↪→

In a SELECT statement, you can specify which columns you want to select from a certain
table. In this case Core Data only asks for Z_PK. This is the primary key that’s used by SQLite
under the hood to uniquely identify your records.

In other words, this query only retrieves an array of integers. It doesn’t retrieve fully populated
albums.

Here’s what a query that fetches albums looks like:

CoreData: annotation: Bound intarray _Z_intarray0
CoreData: annotation: Bound intarray values.
CoreData: sql: SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZALBUMCOVERPATH,

t0.ZGENRE, t0.ZRELEASEDATE, t0.ZTITLE, t0.ZARTIST FROM ZALBUM t0
WHERE t0.Z_PK IN (SELECT * FROM _Z_intarray0) LIMIT 15

↪→

↪→

Thisquery selects farmoreproperties, and it’sbound toanintarraycalled_Z_intarray0.

The integers that this query is bound to, is a list of fi�een integers. These integers were fetched
by that initial request we saw.

Donny Wals 346

Practical Core Data

In other words, it looks like the NSFetchedResults controller fetched a list of integers to
determine the total number of items. Note that the initial query has an ORDER BY clause.
The properties in that clause match the sort properties from the fetch request we used.

The list of integers that’s fetched is ordered in the exact order that we need for our fetched
results controller.

We can take a closer look at what’s in the _Z_intarray0 if we’d like. All we need to do is
bump up the log level a bit. Update the launch argument from before like this to bump the
log level to three:

-com.apple.CoreData.SQLDebug 3

Bumping the log level like this significantly increases the log output. Here’s the relevant bit
we’re looking for:

CoreData: annotation: Bound intarray _Z_intarray0
CoreData: details: Bound intarray value 44 at 0
CoreData: details: Bound intarray value 348 at 1
CoreData: details: Bound intarray value 180 at 2
CoreData: details: Bound intarray value 402 at 3
CoreData: details: Bound intarray value 282 at 4
CoreData: details: Bound intarray value 225 at 5
CoreData: details: Bound intarray value 463 at 6
CoreData: details: Bound intarray value 522 at 7
CoreData: details: Bound intarray value 162 at 8
CoreData: details: Bound intarray value 133 at 9
CoreData: details: Bound intarray value 438 at 10
CoreData: details: Bound intarray value 433 at 11
CoreData: details: Bound intarray value 370 at 12
CoreData: details: Bound intarray value 255 at 13
CoreData: details: Bound intarray value 500 at 14
CoreData: annotation: Bound intarray values.
CoreData: sql: SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZALBUMCOVERPATH,

t0.ZGENRE, t0.ZRELEASEDATE, t0.ZTITLE, t0.ZARTIST FROM ZALBUM t0
WHERE t0.Z_PK IN (SELECT * FROM _Z_intarray0) LIMIT 15

↪→

↪→

Donny Wals 347

Practical Core Data

As you can see, the array of integers contains a bunchof non-sequential numbers. For example,
the first integer in the array is set to 44 and the second is set to 348.

If you scroll up in the log you’ll see a huge list of managed object IDs that belong to the 542
partial records that were fetched earlier.

Here are the first couple of identifiers:

CoreData: annotation: with values: (
"0x862d2ca291676d14 <x-coredata://FE5D9492-B2A6-498A-A224-

077603018B92/Album/p44>",↪→

"0x862d2ca2bf676d14 <x-coredata://FE5D9492-B2A6-498A-A224-
077603018B92/Album/p348>",↪→

"0x862d2ca282676d14 <x-coredata://FE5D9492-B2A6-498A-A224-
077603018B92/Album/p180>",↪→

"0x862d2ca2a6a76d14 <x-coredata://FE5D9492-B2A6-498A-A224-
077603018B92/Album/p402>",↪→

"0x862d2ca2b7a76d14 <x-coredata://FE5D9492-B2A6-498A-A224-
077603018B92/Album/p282>",↪→

Notice how the last part of themanaged object IDsmatch the primary keys in the integer array
that’s used in the query that you saw earlier.

Based on this investigation, we can say that the initial fetch request for 542 records thatwe saw
in Instruments is not aproblem. It’s used todetermine the total number of items, and theorder-
ing of these items. We now know for certain that we don’t have to optimize this initial request
away somehow because it’s just part of how Core Data and NSFetchedResultsCon-
troller handle batching.

There are a total of four log levels that you can use for the Core Data debug launch argument:

1. Shows SQL statements and their execution time
2. Adds values that are bound in the statement
3. Shows fetchedmanaged object IDs
4. Includes SQLite EXPLAIN statement

The higher your log level is set, the more information you’ll see. Most commonly, I use the
first and second log levels. The third can be very useful, but in most cases, it’s a bit too much

Donny Wals 348

Practical Core Data

information to be useful unless you’re looking for something specific like we were in this
section.

Investigating the performance of
NSFetchedResultsController with di�able
data source snapshots
At this point, we haven’t found an explanation for the large number of fetch requests that we
see when the app is first launched. Both the UIKit and the Swi�UI app for this chapter have
this problem. Here’s what the SQLite logs tell us:

1. First, all objectIDs are fetched in the correct order so the fetched results controller
(or @FetchRequestwhich uses a fetched results controller under the hood as far as I
can tell) knows the number of items in the result set, and which object goes where.

2. Then, all managed objects are fetched in batches that match the batch size we’ve set.
3. Lastly, themanaged objects that are needed for the UI are fetched in batches thatmatch
our batch size as we scroll.

Steps one and three are completely expected. Step 2, however, is not.

Through experimentation and trying di�erent things, I have found that step two is not inher-
ently tied to using a fetched results controller. It is, however, tied to using a fetched results
controller in combination with di�able data source snapshots. It seems that to compute a
snapshot, the fetched results controllermust access all managed objects in its result set which
results in all managed objects being fetched. Luckily, we can do better.

Before I show you how we can do better, I want to add somewhat of a disclaimer/warning
regarding Swi�UI here. Apple packed a ton of power into @FetchRequest by building it
on top of fetched results controller. It plays well with Swi�UI’s rendering optimizations, and
Apple canmake improvements to what @FetchRequest does under the hood as they see
fit.

This means that any enhancements I show you for the Swi�UI version of this appmight harm
performance in some scenarios that I haven’t tested or seen myself as of yet. Even though

Donny Wals 349

Practical Core Data

I have done a whole bunch of testing to make sure the Swi�UI sample app for this chapter
doesn’t horribly underperform, I cannot guarantee that the proposed solution in this section
is the best fit for Swi�UI.

The main takeaway for a Swi�UI app here is that I think you should forego using fetch-
BatchSize altogether if your Swi�UI app works perfectly fine without it when you use
@FetchRequest. This way, you can take advantage of any future optimizations Apple
makes, and you can be sure that your code plays nicely with Swi�UI’s List rendering.

That said, the solution I’m about to show you has worked perfectly fine for me in the Swi�UI
sample app for this chapter. I just wanted to take amoment and explain that, inmy experience,
Swi�UI is a complex machine that’s not always simple to profile and debug.

Anyway, let’s get rid of those unwanted fetch requests by refactoring howwe fetch data.

In the unoptimized UIKit app, I created an object called AlbumsProvider. Here’s what the
object looks like before making any modifications:

class AlbumsProvider: NSObject {
fileprivate let fetchedResultsController:

NSFetchedResultsController<Album>↪→

@Published var snapshot: NSDiffableDataSourceSnapshot<Int,
NSManagedObjectID>?↪→

init(storageProvider: StorageProvider) {
let request = Album.byArtistAndNameRequest
self.fetchedResultsController =

NSFetchedResultsController(fetchRequest: request,↪→

managedObjectContext:
storageProvider.persistentContainer.viewContext,

↪→

↪→

sectionNameKeyPath: nil, cacheName: nil)↪→

super.init()

fetchedResultsController.delegate = self
try! fetchedResultsController.performFetch()

Donny Wals 350

Practical Core Data

}

func object(at indexPath: IndexPath) -> Album {
return fetchedResultsController.object(at: indexPath)

}
}

I’ve added an extension to AlbumsProvider to implement NSFetchedResultsCon-
trollerDelegate. This implementation should look familiar because it’s also used in
Chapter 4 - Fetching and displaying data from a Core Data store:

extension AlbumsProvider: NSFetchedResultsControllerDelegate {
func controller(_ controller:

NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith snapshot:
NSDiffableDataSourceSnapshotReference) {

↪→

↪→

↪→

var newSnapshot = snapshot as NSDiffableDataSourceSnapshot<Int,
NSManagedObjectID>↪→

let idsToReload = newSnapshot.itemIdentifiers.filter({ identifier
in↪→

// check if this identifier is in the old snapshot
// and that it didn't move to a new position
guard let oldIndex = self.snapshot?.indexOfItem(identifier),

let newIndex = newSnapshot.indexOfItem(identifier),
oldIndex == newIndex else {

return false
}

// check if we need to update this object
guard (try?

controller.managedObjectContext.existingObject(with:
identifier))?.isUpdated == true else {

↪→

↪→

return false
}

Donny Wals 351

Practical Core Data

return true
})

newSnapshot.reloadItems(idsToReload)

self.snapshot = newSnapshot
}

}

This implementation assigns a new snapshot to a @Published property on the provider.
We can subscribe to this publisher in a view controller to update our UI.

We’re going to make a couple of changes. Instead of an NSDiffableDataSourceSnap-
shot<Int, NSManagedObjectID>, we’re going to send a set of changes to obejcts that
use AlbumsProvider. This means that we’ll need a di�erent publisher that our view con-
troller can subscribe to.

We’ll also need a property to keep track of the changes that we need to send to subscribers.
You’ll see why in a moment.

For now, add the following two properties to the AlbumsProvider definition:

let controllerDidChangePublisher = PassthroughSubject<[Change],
Never>()↪→

var inProgressChanges: [Change] = []

Don’t forget to import Combine if you haven’t already so you can use Passthrough-
Subject. Also, you haven’t defined Change yet. We’ll get to that in a moment.

When you implement controller(_:didChangeContentWith:), no other fetched
results controller delegate methods are called. You should remove the implementation of this
method before proceeding to add the following delegate methods:

• controllerWillChangeContent(_:)
• controller(_:didChange:atSectionIndex:for:)
• controller(_:didChange:at:for:newIndexPath:)

Donny Wals 352

Practical Core Data

• controllerDidChangeContent(_:)

All of these delegate methods should be added to the AlbumsProvider extension that I
showed you earlier.

Let’s go over these delegatemethods one by one. First up, controllerWillChangeCon-
tent(_:):

func controllerWillChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {↪→

inProgressChanges.removeAll()
}

This method is called when the fetched result controller begins to inform its delegate about
changes. This is a good time to clearinProgressChanges sowe have a clean slate towork
with.

Before we implement controller(_:didChange:atSectionIndex:for:), we’re
going to define the Change enum.

The Change enumwill encapsulate all possible changes that can bemade to our data. This
means that we’ll use it to represent inserted and deleted sections as well as inserted, deleted,
moved, and updatedmanaged objects. Here’s what the enum looks like:

enum Change: Hashable {
enum SectionUpdate: Hashable {

case inserted(Int)
case deleted(Int)

}

enum ObjectUpdate: Hashable {
case inserted(at: IndexPath)
case deleted(from: IndexPath)
case updated(at: IndexPath)
case moved(from: IndexPath, to: IndexPath)

}

Donny Wals 353

Practical Core Data

case section(SectionUpdate)
case object(ObjectUpdate)

}

The Change enum itself has two cases: section and object. Each case has an associated
value that’s another enum that represents specific changes for a section or a managed object.
We’ll send an array of Change objects to our view controller so it can tell the collection view
to update accordingly.

Let’smoveon to implementingcontroller(_:didChange:atSectionIndex:for:):

func controller(_ controller:
NSFetchedResultsController<NSFetchRequestResult>,↪→

didChange sectionInfo: NSFetchedResultsSectionInfo,
atSectionIndex sectionIndex: Int,
for type: NSFetchedResultsChangeType) {

if type == .insert {
inProgressChanges.append(.section(.inserted(sectionIndex)))

} else if type == .delete {
inProgressChanges.append(.section(.deleted(sectionIndex)))

}
}

This delegate method is called when the fetched results controller inserts or deletes a section.
Sections are never moved in a fetched results controller which means that .insert and
.delete are the only two valid values for type. When a section was inserted we add a
Change.section object to inProgressChanges. The associated value for this object
when it represents an inserted section isSectionUpdate.inserted(sectionIndex).
I used shorthand notation in the code snippet because Swi� can infer the enum types.

We don’t need to handle any changes yet. We’re simply collecting them in ourinProgress-
Changes array.

Let’s look at controller(_:didChange:at:for:newIndexPath:) next:

Donny Wals 354

Practical Core Data

func controller(_ controller:
NSFetchedResultsController<NSFetchRequestResult>,↪→

didChange anObject: Any,
at indexPath: IndexPath?,
for type: NSFetchedResultsChangeType,
newIndexPath: IndexPath?) {

// indexPath and newIndexPath are force unwrapped based on whether
they should / should not be present according to the docs.↪→

switch type {
case .insert:
inProgressChanges.append(.object(.inserted(at: newIndexPath!)))

case .delete:
inProgressChanges.append(.object(.deleted(from: indexPath!)))

case .move:
inProgressChanges.append(.object(.moved(from: indexPath!, to:
newIndexPath!)))↪→

case .update:
inProgressChanges.append(.object(.updated(at: indexPath!)))

default:
break

}
}

This method is very similar to the section one but it’s called by the fetched results controller
to inform its delegate about changes to managed objects. Managed objects can be inserted,
deleted, moved, or updated. A single object can also be both updated andmoved. When this
happens, the fetched results controller only informs you about the move. We’ll handle this in
the view controller to make sure our UI updates properly.

Let’s look at the last delegate method that you added to AlbumsProvider:

func controllerDidChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {↪→

controllerDidChangePublisher.send(inProgressChanges)
}

Donny Wals 355

Practical Core Data

This method is called when the fetched results controller has nomore changes for us. At this
point, we’ll want to send all changes that we collected to the view controller, and we clear the
inProgressChanges array.

The last step to updating AlbumsProvider is to add some helpers for our view controller.
First, add the following computed property:

var numberOfSections: Int {
return fetchedResultsController.sections?.count ?? 0

}

Next, add the following helper method:

func numberOfItemsInSection(_ section: Int) -> Int {
guard let sections = fetchedResultsController.sections,

sections.endIndex > section else {
return 0

}

return sections[section].numberOfObjects
}

The purpose and implementations for these helpers speak for themselves. We’ll use them
to tell our collection view the number of sections and items per section that should be dis-
played.

These helpers wrap up all work you need to do on AlbumsProvider. Let’s move on to
AlbumsOverviewViewController to see how this new version of AlbumsProvider
in the UIKit app is used.

First, remove the dataSource property from AlbumsOverviewViewController and
add the following cellRegistration property to it:

let cellRegistration = UICollectionView.CellRegistration<AlbumCell,
Album> { cell, indexPath, album in↪→

cell.album = album
}

Donny Wals 356

Practical Core Data

Next, remove the line that contains dataSource = makeDataSource() from view-
DidLoad() because we no longer need the di�able data source. You should also
remove the implementation for the makeDataSource method while you’re at it. Also
update collectionView.dataSource = dataSource so it reads collection-
View.dataSource = self.

Remove the albumsProvider.$snapshot subscription as well.

Before I show you the new code to update your collection view when the fetched results
controller updates, add the following AlbumsOverviewViewController extension:

extension AlbumsOverviewViewController: UICollectionViewDataSource {
func numberOfSections(in collectionView: UICollectionView) -> Int {

return albumsProvider.numberOfSections
}

func collectionView(_ collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {↪→

return albumsProvider.numberOfItemsInSection(section)
}

func collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {↪→

return collectionView.dequeueConfiguredReusableCell(using:
cellRegistration, for: indexPath, item:
albumsProvider.object(at: indexPath))

↪→

↪→

}
}

Now on to the updating magic. The following code belongs at the end of viewDidLoad and
it replaces the old subscription to albumProvider.$snapshot:

albumsProvider.controllerDidChangePublisher
.sink(receiveValue: { [weak self] updates in
var movedToIndexPaths = [IndexPath]()

Donny Wals 357

Practical Core Data

self?.collectionView.performBatchUpdates({
for update in updates {
switch update {
case let .section(sectionUpdate):

switch sectionUpdate {
case let .inserted(index):

self?.collectionView.insertSections([index])
case let .deleted(index):

self?.collectionView.deleteSections([index])
}

case let .object(objectUpdate):
switch objectUpdate {
case let .inserted(at: indexPath):

self?.collectionView.insertItems(at: [indexPath])
case let .deleted(from: indexPath):

self?.collectionView.deleteItems(at: [indexPath])
case let .updated(at: indexPath):

self?.collectionView.reloadItems(at: [indexPath])
case let .moved(from: source, to: target):

self?.collectionView.moveItem(at: source, to: target)
movedToIndexPaths.append(target)

}
}

}
}, completion: { done in

self?.collectionView.reloadItems(at: movedToIndexPaths)
})

})
.store(in: &cancellables)

There’s a lot of code here, but it’s quite repetitive. The main point here is that we iterate
over the updates array that contains Change objects in a call to collection-
View.performBatchUpdates(_:completion:). In the updates closure that we
pass to performBatchUpdates(_:completion:), we can freely call UICollec-

Donny Wals 358

Practical Core Data

tionView’s di�erent methods to make it update its contents. If we’re dealing with a
section update, we check what kind of section update it is and then we update the
collection view accordingly. The same applies for object updates.

Themost interesting case is the moved object update. When an item hasmoved, it might also
have changed and require a reload of the cell that displays the item.

We collect all target index paths for moved items and a�er applying the batch updates, we
tell the collection view to reload the index paths that represent managed objects that were
moved from one position to the other.

We’ve done a lot of work, but with these changes in place, the fetched results controller no
longer needs to compute a di�able data source snapshot which means it no longer needs to
request all managed objects our app launches. A huge improvement.

We canmake a similar improvement for the Swi�UI app and (as youmight expect) it takes a
bit less work.

First, let’s update AlbumsOverview. Replace the @FetchRequest property with the
following property:

@ObservedObject var albumsProvider: AlbumsProvider

We’ll implement a di�erent AlbumsProvider than the one we used in UIKit for the Swi�UI
app. It’ll be somewhat similar to the UIKit version, but its implementation is much more
lightweight.

Note that it’s defined as an @ObservedObject and should be injected by another view. In
this case, you should create an instance of AlbumsProvider in the App struct and pass
it to the AlbumsOverview initializer. If you’re not sure how to do this, refer to the sample
code in the optimized example for this chapter.

Next, update the List rendering code so it looks like this:

List(0..<albumsProvider.numberOfItemsInSection(0), id: \.self) {
index in↪→

let album = albumsProvider.object(at: IndexPath(item: index,
section: 0))↪→

NavigationLink(destination: AlbumDetailView(storageProvider:
storageProvider, album: album)) {↪→

Donny Wals 359

Practical Core Data

AlbumCell(album: album)
}

}

You can seehowourAlbumsProviderwill be similar to theUIKit one. We’re drawingheavily
from the fetched results controllerwrapper for Swi�UI that I’ve shownyou in[Chapter 4 -
Fetching and displaying data from a Core Data store](#chapter-
4---fetching-and-displaying-data-from-a-core-data-store-1). The
main di�erence is that I’m using numberOfItemsInSection(_:) to give you a hint of
how you might work with multiple sections if you decide to implement a similar fetched
results controller wrapper.

I won’t show you the full AlbumsProvider in this section. It’s virtually identical
to the one you used for the UIKit app except it doesn’t need the controllerDid-
ChangePublisher and inProgressChanges properties. The main di�erences are
in the NSFetchedResultsControllerDelegate implementation and the way we
declare the AlbumsProvider class.

The class must conform to ObservableObject since we want to use it with @Observe-
dObject in Swi�UI so it’s declared as follows:

class AlbumsProvider: NSObject, ObservableObject

Here’s what the NSFetchedResultsControllerDelegate implementation for our
AlbumsProvider looks like:

extension AlbumsProvider: NSFetchedResultsControllerDelegate {
func controllerDidChangeContent(_ controller:

NSFetchedResultsController<NSFetchRequestResult>) {↪→

objectWillChange.send()
}

}

This delegate implementation is very simple. We just tell Swi�UI that our AlbumsProvider
will change when controllerDidChangeContent is called. This informs Swi�UI that it

Donny Wals 360

Practical Core Data

should redraw our Listwhich will in turn update the UI. Simple and powerful. And, most
importantly, it gets rid of those pesky unwanted fetch requests that we saw in Instruments
and the console earlier.

It took a bit of e�ort, but by profiling and analyzing our app, we were able to discover that
our code was performing more fetch requests than we’d like so we were able to search for a
workaround.

You saw that we needed to perform quite some work to optimize the UIKit code, and Swi�UI
was much simpler. In both cases, I would recommend that you check how your app performs
with and without a fetchBatchSize. For smaller data sets you might not need a fetch-
BatchSize and the convenience provided by @FetchRequest and di�able data sources
can outweigh very minor performance gains.

Especially for Swi�UI since @FetchRequest can be tweaked and improved by Apple to
integrate with Swi�UI in the best ways possible. Our refactored implementation is muchmore
brute force and would even tell the UI to refresh if an element that’s not in view is updated.
This could be wasteful andmight not happen when you use @FetchRequest.

Improving performance and enhancing code should always be done based onmeasurements
and with a clear goal in mind. This is no di�erent when you’re working with Core Data and
fetched results controller.

In Summary
This chapter brought together some of the principles and rules that you have learned through-
out the book. You sawhowyou canuse theCoreData instrument, the TimeProfiler instrument,
and a launch argument to perform a thorough analysis of your Core Data code.

You saw that even a simple Core Data model can have flaws that make it suboptimal. In this
case, the use of a transformable UIImage causes a large delay when saving a little over
500 records. It also caused a huge spike in memory usage because we were keeping a large
number of images in memory when they weren’t needed.

In general, this is a good example of why you shouldn’t store binary data in a Core Data store.
It’s o�en much better to o�load the data to a file and simply store a reference that can be
used to load the file later. This results in a much lighter record, and it allows you to write

Donny Wals 361

Practical Core Data

performance optimizations to e�iciently load your data from the filesystem and discard this
data when it’s no longer needed.

At the end of this chapter, you saw how you can refactor code to make use of a fetch request’s
fetchBatchSize property, and how this impacts code that uses di�able data sources or
the @FetchRequest property wrapper. You also saw how you can improve performance in
these cases by preventing your code frommaking more fetch requests than needed.

In the next chapter, you will learn how you can configure a Core Data store for unit testing,
allowing it to be used in isolation.

Donny Wals 362

Practical Core Data

Chapter 11 - Using Core Data in your unit
tests
Unit testing your code is an important yet o�en overlooked part of your development cycle.
When you’re writing unit tests, every part of your test suite must operate independently from
the rest of your suite.

As you can imagine, the need to run each test independently from the rest of your suite is
somewhat incompatible with how Core Data works.

When you write something to your Core Data store, your data is persisted in your persistent
store. Nomatter howmany instances of your persistent container create, each instance will
write to the same underlying persistent store(s).

This way of persisting data is exactly what you want in your app, but it’s fundamentally
incompatible with unit testing. In your unit test, each test should have an isolated persistent
store that is not a�ected by your app or other tests in any way.

In this chapter, I will demonstrate two important parts of using Core Data in your unit tests:

• Setting up an in-memory SQLite store
• Properly loading your managed object model

Even though this chapter is not very long, and the sample code for this chapter only contains
a framework with very little code, this chapter contains essential information if you want
to write unit tests for code that depends on Core Data, or rather the StorageProvider
wrapper that we’ve been working with throughout this book.

Setting up an in-memory SQLite store
Whenever youwant to use Core Data in your unit tests, or if youwant to unit test an object that
depends on a Core Data store, you should always create a temporary persistent container that
exists in isolation from any other persistent containers, and that writes its data to a persistent
store that does not share its storage with other containers.

Donny Wals 363

Practical Core Data

Throughout this book, we’ve been working with persistent stores that were based on SQLite.
These stores always write their data to an SQLite file that exists on the file system.

If you remember, in Chapter 2 - Understanding Core Data’s building blocks I wrote that
Core Data supports an in-memory store type. Based on the title of this section, you might
expect that I’m going to tell you to use this in-memory store type in your unit tests, and why.

You’re partially correct. We are going to use an in-memory store. But we’re not going to use
an in-memory store type.

Strange, right? I know.

Before we get to the exact configuration we’ll use, I’d like to explain the idea of an in-memory
store.

Normally, a persistent container is set up with an SQLite store that writes to a file on disk.
Every other persistent container that you create with the same configuration will persist data
to the same underlying SQLite file.

For unit tests, this isn’t great for several reasons.

First, any data that you persist in this store would outlive your unit test. This means that
a�er your test suite has fully executed, you’ll have several artifacts from your unit tests sitting
around on disk. You can resolve this by cleaning up a�er each test, but that poses another
problem. That approach would never allow you to run multiple unit tests in parallel because
they would all read and write from the same store. And when one test runs its cleanup code,
another test might still be running and it would have its data disappear right from underneath
its feet.

To work around all of these issues, you canmake use of an in-memory store. Each persistent
container that you create would use a unique space in memory which means that containers
do not share their underlying storage. This allows multiple containers to exist in your app
while they all operate independently. Another benefit of using an in-memory store is that data
is never persisted to disk so there’s no cleanup that you need to perform a�er a test runs.

So with an in-memory store, we can run multiple tests in parallel without the tests interfering
with eachother, anddata isn’t persistent permanently so youdon’t have to clear your database
a�er every test, and future tests will never be a�ected by old data.

Now, I said that we’re not going to use Core Data’s default in-memory store. Why is that
exactly?

Donny Wals 364

Practical Core Data

Some of Core Data’s features only work in an SQLite store, others only work in a non-SQLite
store. In Chapter 4 - Fetching and displaying data fromaCore Data store, you learned that
some predicates only work when you’re not using an SQLite store. Other features like certain
delete rules only work in an SQLite store.

If you used an SQLite store in your application while using an in-memory store in your unit
tests, you could suddenly have tests produce inaccurate results due to di�erences in how the
underlying storage mechanismworks.

Luckily, SQLite itself comes with a feature to operate on an in-memory store.

This means that you can use all of SQLite’s features while you also get all the benefits of
working with an in-memory store.

To set this up, all you need to do is set the path for the SQLite file in your persistent container
to /dev/null.

Let’s see how this can be done in a way that allows you to easily create instances of your
StorageProvider that are set up for usage in your unit tests or application by passing a
single argument to your StorageProvider’s initializer.

class StorageProvider {

let persistentContainer: PersistentContainer

init(storeType: StoreType = .persisted) {
persistentContainer = NSPersistentContainer(name: "Chapter11")

if storeType == .inMemory {
persistentContainer.persistentStoreDescriptions.first!.url =

URL(fileURLWithPath: "/dev/null")↪→

}

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

if let error = error {
fatalError("Core Data store failed to load with error:

\(error)")↪→

Donny Wals 365

Practical Core Data

}
})

}
}

enum StoreType {
case inMemory, persisted

}

In this code, I’ve changedStorageProvider’sinit to take astoreType argument. The
default value for this argument is .persisted. This means that we don’t have to pass this
argument if the StorageProvider is initialized in the app which is where we’ll typically
want data to be persisted on the file system.

When creating a new StorageProvider for unit tests, we can pass .inMemory as the
StoreType.

The only di�erence between setting up a normal SQLite based persistent container and
a persistent container that uses an in-memory SQLite store is the url that’s used for the
persistent store description.

When you attempt to create an SQLite store at /dev/null, SQLite will know that your store
should be persisted inmemory rather than on disk, and you’ll still get all of SQLite’s behaviors
while you run your tests against an in-memory store that was set up like this.

Using this StorageProvider in your unit tests is as simple as creating a new instance in
your unit test case:

class Chapter11Tests: XCTestCase {
var storageProvider: StorageProvider!

override func setUpWithError() throws {
storageProvider = StorageProvider(storeType: .inMemory)

}

func testAddItemPersistsToDoItem() throws {
let request: NSFetchRequest<ToDoItem> = ToDoItem.fetchRequest()

Donny Wals 366

Practical Core Data

let context = storageProvider.persistentContainer.viewContext
let initialCount = try context.count(for: request)
XCTAssertEqual(initialCount, 0)

storageProvider.addToDoItem(title: "Test item", dueDate: nil,
in: context)

let finalCount = try context.count(for: request)
XCTAssertEqual(finalCount, 1)

}
}

The test I’ve created here is simple, yet e�ective. My unit test will always start with a clean
in-memory database. In this test, I check that the database is empty, this is only done so
you can see for yourself that my database is empty. Whether or not this assertion is valuable
is questionable because when your test is set up correctly, you’ll always start with a fresh
database.

Next, I insert anewToDoItemusing theStorageProvider’saddToDoItem(title:dueDate:in:)
method. I haven’t shown you this method but I think you should be able to figure out what
this method looks like. If you’re not sure, take a look at this chapter’s code bundle.

Lastly, I verify that I now have a single item in the database by retrieving the count for my
initial fetch request again.

Because this test uses an in-memory store, it’s highly repeatable and every test runs isolated
from the rest of your app.

There’s just one problem. Once you start using this approach, you’ll find that you run into
warnings like this in Xcode’s console:

CoreData: warning: Multiple NSEntityDescriptions claim the
NSManagedObject subclass 'ToDoItem' so +entity is unable to
disambiguate.

↪→

↪→

This happens because you’re creatingmultiple instances of StorageProvider at the same

Donny Wals 367

Practical Core Data

time. You’ll likely have just one in your app, and several in your unit tests (one for each test
case that needs a storage provider). This also means that you have multiple NSPersis-
tentContainer instances, and each instance loads its ownmanaged object model. That
means that you’re loading and configuring the samemanaged object model more than once.
Let’s see howwe can prevent this by properly loading ourmanaged objectmodel in a scenario
where we needmultiple persistent containers to share the samemodel.

Properly loading your managed object
model
When Core Data loads your managed object model, it associates your managed object sub-
classes with objects in your managed object model. Whenmultiple managed object models
claim the samemanaged object subclasses, Core Data throws warnings because that’s some-
thing that shouldn’t happen. The following warning should look familiar to anybody that has
run into this situation:

Multiple NSEntityDescriptions Claim NSManagedObject Subclass ...

In this case, we knowwhy it happens, and it’s not likely to cause trouble.

However, it is somewhat frustrating to have warnings like this in the console, and getting rid
of these warnings is relatively simple.

In this book, you’ve created instances of NSPersistentContainer by passing the name
of your managed object model to its initializer.

There is a second initializer that we can use. This initializer takes the name of our data
model, and a loaded NSManagedObjectModel instance. In Chapter 2 - Understanding
Core Data’s building blocks, I showed you the following code that loads amanaged object
model:

lazy var managedObjectModel: NSManagedObjectModel = {
guard let url = Bundle.main.url(forResource: "MyModel",

withExtension: "momd") else {↪→

Donny Wals 368

Practical Core Data

fatalError("Failed to locate momd file for MyModel")
}

guard let model = NSManagedObjectModel(contentsOf: url) else {
fatalError("Failed to load momd file for MyModel")

}

return model
}()

We can reuse this code to create a static property on our StorageProvider that’s reused
for every NSPersistentContainer instance that we create.

The following code can be used to achieve this:

class StorageProvider {

static var managedObjectModel: NSManagedObjectModel = {
let bundle = Bundle(for: StorageProvider.self)

guard let url = bundle.url(forResource: "Chapter11",
withExtension: "momd") else {↪→

fatalError("Failed to locate momd file for Chapter11")
}

guard let model = NSManagedObjectModel(contentsOf: url) else {
fatalError("Failed to load momd file for Chapter11")

}

return model
}()

let persistentContainer: PersistentContainer

init(storeType: StoreType = .persisted) {
persistentContainer = NSPersistentContainer(name: "Chapter11",

Donny Wals 369

Practical Core Data

managedObjectModel:
Self.managedObjectModel)↪→

if storeType == .inMemory {
persistentContainer.persistentStoreDescriptions.first!.url =

URL(fileURLWithPath: "/dev/null")↪→

}

persistentContainer.loadPersistentStores(completionHandler: {
description, error in↪→

if let error = error {
fatalError("Core Data store failed to load with error:

\(error)")↪→

}
})

}
}

Note that I’ve made a fewmodifications to how I load themanaged object model. Instead of a
lazy var I’m using a static var to make sure I can reuse my managed object model
across di�erent instances of StorageProvider. I also use Bundle(for: Storage-
Provider.self) instead of Bundle.main to locate my momd file. I do this so it’s easy to
move the StorageProvider from an app to a framework or vice versa. Lastly, I pass this
sharedmanaged object model to my NSPersisentContainer.

When runningmy test suite again, no warnings about the managed object model appear in
the console because I’m reusing a single managed object model across all NSPersistent-
Container instances I create.

In Summary
In this short chapter, you learned two very important things. First, you learned how you can
create an in-memory SQLite store that is suited for use in a unit test suite. Knowing how to

Donny Wals 370

Practical Core Data

do this is essential if you’re serious about writing unit tests in a way where every test runs in
isolation and doesn’t rely on previous tests. You also learned how you canmake sure that your
managed object model is only loaded once to prevent warnings that show up whenmultiple
instances of NSManagedObjectModel exist in your app and unit test suite.

Ensuring that your managed object model is only loaded once is good practice, but it’s only
needed when you create multiple instances of NSPersistentContainer in your app. If
you always only have a single instance because you’re not working with unit tests, there’s no
need to manually load your managed object model. You’re loading it only once anyway.

With this chapter, our journey together has come to an end. I have transferred virtually
everything I know about Core Data to you through all of the chapters in this book. At this
point, I hope you feel confident that you’re able to design and build apps that use Core Data
in a modern, and correct way. As with many things, simply reading a book or being told how
something works usually isn’t enough to master it. Practice makes perfect, and with Core
Data it’s no di�erent. The more you use Core Data, the better you’ll be able to work with it.
Your experiences will guide your decisions and your intuition will develop to help you get a
feeling for the best approach to implementing Core Data related features.

My goal with this book was to help you gain an understanding of what it’s like to work with
Core Data, how it fits in your apps, and how it’s used in modern applications.

The next chapter contains links and suggestions to help youdeepen your CoreData knowledge,
and it serves as a place for me to call out content and people that have helpedme learn Core
Data.

I’ll take this opportunity to say goodbye for now. If you have any questions or feedback for me
about this book, or if you have any stories you’d like to share with me, sendme an email at
feedback@donnywals.com. I’d love to hear your thoughts about this book.

Cheers and thanks for buying and reading this book,

Donny

Donny Wals 371

Practical Core Data

Chapter 12 - Where to go from here
Our journey into the world of Core Data ends here, but that doesn’t mean your Core Data
journey is over. Core Data is a large framework, and while I have donemy best to teach you
more than just the basics, there’s always room to learn more.

In this last chapter of the book, I would like to leave you with some recommendations to help
you continue your Core Data journey.

My first recommendation is to use Core Data a lot. I’m not saying you should add Core Data to
any project that you work on. I am saying that you should practice and experiment with the
framework. Core Data is no di�erent than any other new framework or skill you learn. The
best way to master Core Data is through practice and repetition.

If you’re interested in learning more about Core Data’s most common underlying store, I
recommend that you take a closer look at SQLite. If you want to experiment with using SQLite
directly in an iOS app you could even take a look at the **GRDB SQLite wrapper. GRDB is a
common lightweight Core Data alternative that’s used in lots of apps.

While writing this book, I came across several great resources written by the community. One
of these resources that I’d like to call out is Dave DeLong’s Laws of Core Data blog post.
While I don’t agree with every point on his list, I think he did a fantastic job of summarizing
the most important rules to keep in mind when you’re working with Core Data.

Another resource that I want to mention is William Boles’ post on Core Data migrations.
It’s been some time since I first needed to write a custommigrator for an app that I worked
on, andWilliam’s blog was extremely helpful in helping me understand how a step-by-step
migration can be implemented. The migrator in Chapter 9 - Updating your datamodel and
performingmigrations is heavily inspired by William’s post.

If you want to take a look at a deep-dive on the NSPredicate API, I recommend that you
check outNSHipster’s NSPredicate article. It’s an extensive deep-dive into predicates. Even
though not every predicate covered in the article will work with Core Data stores that use an
SQLite store, I still think it’s worth taking a look at this article.

When I was first learning Core Data, I bought a copy of objc.io’s Core Data book. The book
hasn’t been updated for a while, but it’s still a good resource if you want to learn about Core
Data from a di�erent perspective than the one I o�ered in this book.

Donny Wals 372

https://www.sqlite.org/index.html
https://github.com/groue/GRDB.swift
https://davedelong.com/blog/2018/05/09/the-laws-of-core-data/
https://williamboles.me/progressive-core-data-migration/
https://nshipster.com/nspredicate/
https://www.objc.io/books/core-data/

Practical Core Data

The objc.io book contains a ton of useful helpers and abstractions that you can add to a Core
Data app that helps reduce some of the repetitive code that you typically end up writing when
you use Core Data.

Another objc.io resource that I want to recommend is anold issue they did onCoreData. The
posts and code are from 2013 so it’s not exactly up-to-date. Regardless, there’s some useful
information in there, and I think that it’s especially interesting if you want to understand some
of Core Data’s history.

I’d also like to point you towards the Core Data section on Antoine van der Lee’s blog. An-
toine is a good friend of mine, and he has been publishing some really good Core Data related
content.

In addition to community-created content, it’s always a good idea to refer to Apple’s doc-
umentationwhen you’re learning an Apple framework. Apple’s Core Data documentation
is some of Apple’s better documentation out there so it’s high on my list of recommended
reading.

With this book, and the resources I linked to in this chapter, I think you have all the information
you need to become a Core Data master. Themost important thing for you to do right now
is practicing and experimenting with Core Data. I’ve already mentioned it at the start of this
chapter but the best way to master Core Data is to use it a lot.

I’d like to take thismoment to thank you for purchasing and readingmybook. I truly appreciate
it and it means a lot to me. Don’t hesitate to sendme any questions or feedback you have via
an email to feedback@donnywals.com. I’d love to hear what you thought of this book, and
I’d love to know how you’re integrating Core Data in the projects you’re working on.

Donny Wals 373

https://www.objc.io/issues/4-core-data/
https://www.avanderlee.com/category/core-data/
https://developer.apple.com/documentation/coredata
https://developer.apple.com/documentation/coredata
mailto:feedback@donnywals.com

	Practical Core Data: A modern guide to the Core Data framework
	Chapter Overview
	Chapter 1 - Taking your first steps with Core Data
	Chapter 2 - Understanding Core Data’s building blocks
	Chapter 3 - Defining entities using the model editor
	Chapter 4 - Fetching and displaying data from a Core Data store
	Chapter 5 - Using Core Data in a multithreaded environment
	Chapter 6 - Sharing a Core Data store with apps and extensions
	Chapter 7 - Synchronizing your store with a remote data source
	Chapter 8 - Synchronizing your store with CloudKit
	Chapter 9 - Updating your data model and performing migrations
	Chapter 10 - Debugging and profiling your Core Data implementation
	Chapter 11 - Using Core Data in your unit tests
	Chapter 12 - Where to go from here?

	Chapter 1 - Taking your first steps with Core Data
	Creating a project that uses Core Data
	Creating an NSPersistentContainer and loading your data model
	Defining a simple Core Data entity
	Adding new records to a Core Data store
	Retrieving records from your store
	Modifying and deleting records
	In Summary

	Chapter 2 - Understanding Core Data’s building blocks
	Breaking down the persistent container
	Understanding the managed object model
	Understanding the persistent store coordinator
	Diving deeper into managed object contexts

	Exploring Core Data’s underlying storage
	In Summary

	Chapter 3 - Defining entities using the model editor
	Defining entities and their properties in the model editor
	Adding properties with arbitrary types to your model
	Writing and generating NSManagedObject subclasses
	Using the Class definition Codegen option
	Using the Category/Extension Codegen option
	Using the Manual/None Codegen option

	Managing relationships
	Understanding Core Data’s different relationships
	Setting up a relationship in Core Data’s model editor

	Using fetched properties
	Understanding abstract entities
	In Summary

	Chapter 4 - Fetching and displaying data from a Core Data store
	Understanding how Core Data executes a fetch request
	Exploring Core Data’s faulting behavior

	Filtering and sorting results with Predicates and Sort Descriptors
	Fetching data using NSFetchedResultsController
	Using a fetched results controller in a UIKit app
	Using a fetched results controller in SwiftUI
	Using @FetchRequest to replace fetched results controller in SwiftUI
	Using SectionedFetchRequest to fetch sectioned data in SwiftUI

	Building a filter screen with SwiftUI’s @FetchRequest and dynamic predicates
	In Summary

	Chapter 5 - Using Core Data in a multithreaded environment
	Understanding Core Data’s multithreading model
	Passing managed objects between contexts
	Understanding and using child contexts
	Responding to changes in another managed object context
	Understanding Core Data’s query generations
	In Summary

	Chapter 6 - Sharing a Core Data store with apps and extensions
	Setting your app up for data sharing with App Groups
	Enabling App Groups for your app or extension
	Configuring your persistent container for data sharing
	Migrating an existing SQLite store to your App Group

	Efficiently using a shared Core Data store
	Understanding why batch requests don’t trigger notifications
	Getting started with persistent history tracking
	Using persistent history tracking with multiple apps and extensions

	In Summary

	Chapter 7 - Synchronizing your store with a remote data source
	Using a remote data source to populate a local store
	Using a JSON response to populate a Core Data store
	Improving your data import with batch inserts
	Performing incremental updates based on remote data

	Synchronizing local changes to a remote store
	Deciding on a synchronization strategy
	Implementing your synchronization strategy

	In Summary

	Chapter 8 - Synchronizing your store with CloudKit
	Preparing your application for CloudKit synchronization
	Updating your code with NSPersistentCloudKitContainer
	Updating your project’s capabilities
	Seeing your persistent CloudKit container in action
	Modeling your entities for CloudKit

	Exploring the iCloud dashboard
	Taking a look at your CloudKit Schema
	Understanding how persistent CloudKit container handles relationships

	Configuring which entities are synchronized using model configurations
	Using fetch properties to establish a relationship between entities in different stores
	Creating and using separate model configurations

	Adding data to a public CloudKit store
	Setting up a model configuration for the public database
	Updating the CloudKit schema for the public database
	Understanding the differences between the private and public database

	Understanding CloudKit’s conflict resolution
	Understanding CloudKit’s migration limitations
	In Summary

	Chapter 9 - Updating your data model and performing migrations
	Understanding Core Data migration types
	Adding a new model version
	Performing a lightweight migration
	Defining a model map for your migration
	Writing a custom migration policy
	Performing a custom step-by-step migration
	Writing tests for your step-by-step migrations
	Obtain SQLite files from devices and simulators
	Adding a test target and verifying a migration

	In Summary

	Chapter 10 - Debugging and profiling your Core Data implementation
	Measuring and improving performance with Instruments
	Peeking under the hood with launch arguments
	Investigating the performance of NSFetchedResultsController with diffable data source snapshots
	In Summary

	Chapter 11 - Using Core Data in your unit tests
	Setting up an in-memory SQLite store
	Properly loading your managed object model
	In Summary

	Chapter 12 - Where to go from here

