


Dedicated	to	Walter	Tufró

Who	taught	me	that	you	have	to	pursue	your	dreams	in	life.



2D	Shader	Development:	Foundations

Copyright	©	2018	Francisco	Tufro

No	parts	of	this	publication	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	otherwise,
without	the	prior	written	permission	of	the	copyright	owner.

Published	by	Hidden	People	Club

http://hiddenpeople.club


Table	of	Contents

Introduction	to	the	series
Motivation
I	use	Unity,	why	should	I	bother	learning	shader
programming	at	all?
Who	are	these	books	for?
I	need	help!	What	can	I	do?
Series	Overview

Foundations
2D	Illumination
Procedural	Texture	Manipulation	Book
Full	Screen	Effects	Book

Downloading	the	source	code	for	the	exercises
Introduction	to	Shaders

What	is	the	GPU?
What	is	a	Shader?
Conclusion

Using	shaders	in	Unity
How	to	apply	a	shader	in	Unity

Create	the	main	GameObject
Add	a	renderer
Let’s	take	a	look	at	our	shader.

The	structure	of	a	Shader	in	Unity
The	Shader	Command
The	Properties	Command
The	SubShader	Command
The	Pass	Command
CGPROGRAM	and	ENDCG

Is	that	it?
Unity’s	built-in	shaders
Conclusion



Fragment	Shader	basics
What’s	the	difference	between	Vertex	and	Fragment
shaders?
Solid	Color:	Writing	our	very	first	shader	from	Scratch

Defining	the	vertex	and	fragment	methods
Some	required	data	structures
The	vertex	shader	method
The	fragment	shader	method

Understanding	RGBA
Playing	with	colors

The	lerp	function
The	_Time	struct
The	sin	function

UV	Mapping
Quad	UV	mapping
Wrapping	Modes

Writing	a	Shader	that	displays	a	Texture
Main	Texture	parameter
Changes	to	the	appdata	struct
Changes	to	the	v2f	struct
Defining	the	_MainTex	variable	inside	our	shader
The	vertex	shader
The	fragment	shader
Setting	up	the	material

Exercise	1:	Side	Scroller	Background
Conclusion

Blending	Modes
The	theory	behind	Blending	Modes

Additive
Multiply

Blending	Two	Textures
Blending	with	the	Screen

The	Blend	command
The	BlendOp	command



Alpha	Blending
Exercise	2:	Blending	Modes
Conclusion

Where	to	go	now?
Continue	with	the	other	books	in	the	series

2D	Illumination
Procedural	Texture	Manipulation
Full-Screen	Effects

The	internet
Books

Exercise	Solutions
Exercise	1	Solution
Exercise	2	Solution

Multiply
Alpha	Blending
Additive
Subtractive
Result

Appendix	I:	Linear	Interpolation
Appendix	II:	HSV	Color	Space
Acknowledgements
Credits



Introduction	to	the	series

Motivation

During	several	years	of	developing	my	own	games	as	a	solo
dev,	with	Nastycloud	and,	now,	with	Hidden	People	Club,	I	found
there	were	little	to	no	sources	of	organized	information	about
how	to	use	the	power	of	shader	programming	specifically	in	the
context	of	2D	games.	Every	single	shader	course	or	book	out
there	talks	about	3D	lightning,	3D	texturing,	shadow,	and	light
mapping,	etc.	But	none	of	them	provided	a	good	section	on	2D.	I
get	it	though,	2D	is	kind	of	a	subset	of	3D	when	we	talk	about
computer	graphics.	Also,	in	general,	computer	graphics	books
are	targeted	to	engine	creators,	which	usually	work	on	3D.

From	giving	workshops	about	this	topic	in	Argentina	and	the
United	States	I	found	out	that	there	are	a	lot	of	people	that	are
not	ready	for	the	3D	math	behind	computer	graphics,	but	that
still	can	benefit	from	learning	a	leaner	version	of	the	topic
specifically	designed	for	2D	development.

The	techniques	I	describe	in	the	book	are	the	consequence	of
my	own	experience	in	the	topic	and	taken	straight	from	the
trenches.	Almost	all	of	them	have	been	used	in	Nubarron:	the
adventure	of	an	unlucky	gnome	and	other	smaller	projects.	So	I
thought	it	would	be	a	good	idea	to	sit	down	and	organize	all	the
information	I’ve	been	collecting	and	figuring	out	during	the	last
4	years	and	share	it	with	you	all.

As	I	mentioned,	the	content	in	the	book	series	has	already
been	taught	in	several	workshops	during	2014-2017.	I’ve
updated,	expanded,	sorted,	and	enhanced	it	during	these	3



years,	and	my	plan	is	to	continue	making	it	better.

I	use	Unity,	why	should	I	bother	learning	shader
programming	at	all?

The	video	game	industry	is	reaching	a	point	where	you	need
something	new	to	stand	out.	We	can’t	just	develop	whatever,
launch	it	and	expect	it	to	make	money	for	us.	Unless	you’re
doing	a	whatever	simulator,	those	seem	to	work	for	some
reason.	But	for	the	rest	of	us,	trying	to	stand	out	in	a	crowded
space,	we	need	to	create	games	that	play	and	look	uniquely,	at
least	to	some	degree.

Shader	programming	is	one	of	the	most	important	areas	of
game	development	that	binds	visual	art	and	technology.	It
makes	both	worlds	make	sense	of	each	other.	Visual	artists	may
have	great	ideas	in	mind,	they	have	the	means	to	create
fantastic	looking	worlds,	but	none	of	them	will	run	at	60	fps
unless	a	programmer	that	understands	shaders	is	in	the	mix.

Not	only	that,	if	you	know	how	to	program	shaders,	you	can
aid	the	visual	arts	team	in	deciding	which	things	make	sense
and	which	don’t.	There	are	many	things	that	are	way	easier	to
achieve	using	a	simple	shader	than	having	animators	do	them.
Combining	several	techniques	you	can	achieve	great	results
without	much	processing	or	memory	effort,	which	is	key	to
having	high	performance	in	games.

Using	Unity	is	great,	but	if	you	limit	yourself	using	stock
shaders	(the	ones	that	come	with	Unity),	you’ll	be	missing	a
huge	opportunity	to	make	your	games	look	unique	and	perform
at	a	good	frame	rate.

Just	as	an	example,	in	Nubarron:	the	adventure	of	an	unlucky



gnome	we	used	Spine	as	the	main	software	for	skeletal
animations.	But	there	is	a	major	issue	regarding	the	amount	of
processor	that	the	Spine	runtime	needs	and	the	amount	of
garbage	it	creates	in	memory.	From	a	pragmatic	standpoint,	we
couldn’t	have	more	than	20/30	animating	objects	on	screen.	We
usually	surpass	that	by	quite	a	lot,	especially	in	the	background
foliage	layers,	where	every	single	asset	is	moving.	So,	instead	of
animating	the	foliage	using	Spine,	or	a	sprite	sheet	(which
would	consume	too	much	memory),	we	created	a	generic
shader	that	creates	a	wave	that	moves	the	asset	from	one	side
to	the	other,	like	responding	to	wind	changes.	That	was	a	great
choice.	It	works	really	well	visually	and	does	not	consume	any
CPU	time.

I	created	this	book	using	Unity	2017.3.0f3,	which	may	not	be
the	latest	one	when	you	read	it,	so	some	things	may	have
changed	slightly	(but	it’s	unlikely!).	Please	get	in	touch	if
something	breaks	and	I’ll	see	to	upload	a	fix	in	the	Github’s	code
or	the	series	website.

Who	are	these	books	for?

I	think	the	books	are	for	anyone	developing	video	games.	It	is
of	special	interest	to	programmers,	obviously,	but	also	to	artists
and	producers,	because	it	gives	an	introduction	to	what’s
feasible,	and	what	kinds	of	techniques	can	be	used	to	achieve
certain	effects.

If	you	have	never	ever	done	any	computer	graphics
programming,	this	could	be	a	good	way	to	dive	into	the	topic.	I’ll
ignore	most	of	the	linear	algebra	needed	to	understand	3d
transformations	and	such,	there	are	several	resources	that	cover
this	topic,	and	I	get	nervous	when	I	see	computer	graphic	books
starting	with	one	or	more	‘Linear	Algebra	recap’	chapters.



If	you	lean	more	towards	the	theory,	I’m	afraid	this	book	may
not	be	for	you.	There	is	some	theory	in	the	book	for	sure,	but	the
minimum	amount	in	order	to	make	the	reader	understand	the
practical	discussion.	The	book	is	aimed	at	the	pragmatic
programmer	that	wants	information	a	little	bit	more	digested
than	regular	textbooks.

I	need	help!	What	can	I	do?

First	of	all,	Don’t	Panic.	It’s	normal	to	get	stuck	while	learning
something	new,	and	I’m	here	to	help	you.	The	first	thing	I’d
suggest	is	that	you	join	us	on	our	Hidden	People	Club	Discord
server	https://discord.gg/776BVVD	if	you	haven’t	already.	I	am
using	it	to	have	organized	discussions	about	the	book	and	its
content.

Once	you’re	in	be	sure	to	use	the	right	channel	to	send	your
questions	(	#2dshader-development	).	I’ll	be	monitoring	the
channel	to	help	you	on	your	path	to	learning	these	materials.

I	also	encourage	you	to	share	everything	you	create	in	the
server	too,	I’m	always	delighted	to	see	the	creations	made	with
my	teachings	as	a	starting	point.

Be	sure	to	also	follow	me	on	@franciscotufro	and	ping	me	if
you	need	anything,	my	DMs	are	open.

Series	Overview

I	decided	to	cover	several	topics	that	I	think	are	of	special
interest	when	starting	working	on	2D.	These	topics	were	useful
to	me	when	working	on	games	in	the	past,	and	I	consider	them
part	of	my	everyday	developer	toolkit.

https://discord.gg/776BVVD
https://twitter.com/franciscotufro


Foundations

In	this	book	I’ll	make	an	introduction	to	shaders,	explaining
what	the	GPU	is	and	what	role	the	shaders	play	in	it.

After	understanding	what	a	shader	is,	we’ll	dive	into	how	to
apply	and	use	shaders	in	unity.	We’ll	also	learn	what’s	the
general	structure	of	a	ShaderLab	program,	Unity’s	own
language	for	shader	creation.

Then,	we’ll	dive	into	Fragment	shaders,	we’ll	study	the
difference	between	a	fragment	shader	and	a	vertex	shader,	we’ll
talk	about	colors,	RGB	color	representation,	UV	mapping,	and
we’ll	write	a	few	basic	shaders,	from	a	solid	color	shader	to	a
textured	shader	with	movement.

Finally,	we’ll	discuss	blending	modes.	How	we	can	rely	on
them	to	mix	between	two	textures,	between	a	texture	and	the
screen	and	how	to	make	sprites	transparent.

2D	Illumination

In	the	2D	illumination	book,	we’ll	focus	on	figuring	out
different	techniques	to	give	life	to	our	games	through	the	use	of
illuminations.	We’ll	cover	the	most	basic	and	widespread
techniques	for	static	lights	and	shadows,	that	will	give	us	an	easy
and	cheap	way	to	create	an	ambiance	that	integrates	with	our
characters.

We’ll	also	cover	dynamic	2D	lighting.	With	the	aid	of
specifically	crafted	normal	maps,	we	can	rely	on	existing	3D
lights	to	create	interactive	sources	of	lights,	that	will	provide	a
really	amazing	look	to	our	games.



Procedural	Texture	Manipulation	Book

In	this	book,	we’ll	dive	into	how	we	can	modify	and	mix
existing	textures	to	create	amazing	effects	or	animations	inside
our	shaders.	This	will	give	you	the	tools	to	be	able	to	implement
things	that	were	unthinkable	before	because	you’ll	be	able	to	do
some	of	the	things	animators	do	in	After	Effects	that	are
impossible	to	import	in	a	frame	by	frame	basis.	We’ll	use	several
techniques	including	sine	waves,	smoothsteps,	color
offsetting/chromatic	aberration	and	more.

Full	Screen	Effects	Book

In	this	book,	I’ll	introduce	you	to	a	widely	used	technique
where	you	apply	a	shader	to	the	rendered	screen.	In	this	shader,
you	can	use	all	the	techniques	from	the	other	books	to	achieve
amazing	looking	full-screen	effects.

We’ll	make	a	special	emphasis	in	implementing	a	Bloom
effect	from	scratch,	Camera	Shake,	Retro-looking	effects,	and
more.

Downloading	the	source	code	for	the	exercises

All	the	source	code	for	the	exercises	can	be	found	on	GitHub,
with	MIT	License	(so	you	can	actually	use	it	in	your	project,
except	for	the	assets).

This	book’s	repository	is
https://github.com/hiddenpeopleclub/2dshaders-book-
foundations-exercises

If	you	are	familiar	with	git,	you	can	clone	the	repository	as

https://github.com/hiddenpeopleclub/2d-shaders-book-foundations-exercises


usual.	If	you	don’t	know	anything	about	git	or	don’t	want	to
install	it,	you	can	download	a	zip	file	containing	all	the	files	from
https://github.com/hiddenpeopleclub/2dshaders-book-
foundations-exercises/archive/master.zip.

https://github.com/hiddenpeopleclub/2d-shaders-book-foundations-exercises/archive/master.zip


Introduction	to	Shaders

In	this	chapter,	we’ll	learn	a	little	bit	about	the	context	in
which	shaders	exist.	What	is	a	GPU	and	why	we	need	one	(or
more!).	We’ll	also	define	what	a	Shader	is,	which	kind	there	are
and	what	are	they	used	for.

What	is	the	GPU?

GPU	stands	for	Graphics	Processing	Unit,	in	other	words,	is	a
piece	of	hardware	designed	to	handle	graphics-specific	tasks.
We	can	go	as	far	as	the	70s	to	find	that	people	were	already
working	on	graphics-specific	hardware,	old	arcade	systems	had
their	own	graphics	chips	to	handle	rendering	in	their	big
screens.	But	we’re	more	interested	in	the	latest	generations,	that
has	been	evolving	since	the	nineties	when	3d	games	started	to
get	more	and	more	complex	and	required	too	much
computation	to	work	on	the	CPU.	That’s	when	we	started
buying	a	separate	process	unit,	the	GPU.	The	GPU,	as	I	said
before,	is	a	piece	of	hardware	that	is	specifically	designed	to
handle	graphic-related	tasks.	Well,	that’s	half-true	though,	since
modern	GPUs	can	also	be	used	for	other	kinds	of	processing,	but
their	original	intent	was	graphics.

You	may	be	wondering	why	do	we	need	a	specific	hardware	to
do	graphics?	Why	can’t	our	3	gigahertz	quad-core	mega
powerful	CPU	handle	this?	The	answer	is	simple:	Concurrency.	A
standard	resolution	nowadays	is	1920x1080.	Doing	the	math
you’ll	see	that	you	have	about	2.073.600	pixels	on	the	screen.	We
can	also	agree	that	we	want	our	games	to	run	at	least	at	30	fps
(usually	60,	or	more	with	VR!),	which	for	us	programmers	means
our	frames	need	to	be	rendered	in	less	than	33	ms.	If	you	take



into	account	all	the	processing	that’s	needed	to	render	a	full-
screen	world,	with	say	200-300	objects	of	many	hundreds	or
thousands	of	triangles	each	and	fill	2	million	pixels,	all	of	that	in
less	than	33	ms,	you’ll	see	how	easily	we	run	out	of	time.	The
major	issue	is	that	the	CPU	can’t	do	much	work	concurrently.	Of
course,	you	can	use	several	cores	and	processors,	but	you’re
always	bound	to	a	low	number	of	threads	that	can	go	in	parallel,
say	4	or	8.	There	is	not	much	difference	in	splitting	our	game
rendering	logic	between	4	or	8	concurrent	threads.	So	that’s
where	the	GPU	comes	in.

GPUs	are	designed	to	be	extremely	concurrent.	They	have	less
processing	power	per	thread	than	a	normal	CPU	and	have	fewer
instructions,	but	they	can	do	millions	of	operations	concurrently.
Since	most	of	the	processing	required	to	color	each	pixel	can	be
done	in	an	isolated	manner,	one	can	rely	on	heavy	parallel
hardware	to	speed	things	up.	In	practice,	one	can	program	the
GPU	to	do	all	the	processing	for	each	vertex	and	each	pixel
almost	at	the	same	time.	There	are	obviously	certain	restrictions,
but	the	overall	speedup	is	enormous.	This	parallel	nature	of	the
GPU	ended	up	being	extremely	useful	for	other	things,	like
scientific	calculations	and	even	bitcoin	mining	back	in	the	day.
With	a	simple	google	search	on	General	Purpose	GPU	(or
GPGPU),	CUDA	(Nvidia’s	library	for	general	purpose	GPU)	or
OpenCL	(An	open	standard	that	is	used	to	program	GPUs
among	other	platforms)	you’ll	find	tons	of	information	on	ways
to	use	the	GPU	other	than	rendering.

Now	that	you	know	what	the	GPU	is	and	why	we	need	it,	let’s
see	how	to	program	it	using	shaders.

What	is	a	Shader?

In	the	previous	section,	we	learned	that	in	order	to	do	graphics



at	full	speed	we	need	to	make	use	of	the	GPU.	But	how?
Graphics	APIs	like	OpenGL	or	DirectX	use	what	is	called	Shaders.
Shaders	are	small	programs	that	are	loaded	into	the	GPU	to
process	the	data	we	send	to	it.	All	that	is	performed
concurrently,	by	the	many	threads	present	in	the	GPU.	Using
shaders	you	can	apply	a	texture	to	a	model,	show	a	2D	sprite,	do
special	effects,	perform	deformation	on	models	and	an	infinity	of
things	more.	In	this	course	we’ll	pay	special	attention	to	one	type
of	shader,	the	fragment	shader,	that	is	the	shader	that	runs	at
least	once	per	pixel	on	the	screen.

Just	so	that	you	are	aware,	there	are	other	types	of	shaders.
The	most	used	along	with	fragment	shaders	are	the	vertex
shaders,	which	run	once	per	vertex	of	your	3D	or	2D	models.	You
can	also	find	tessellation	shaders,	that	are	used	to	create	or
remove	triangles	from	existing	ones,	geometry	shaders,	that
work	on	patches	of	several	triangles,	and	compute	shaders	that
are	used	outside	the	pipeline	to	calculate	things	in	parallel.	As	I
said,	we’ll	only	make	use	of	fragment	shaders,	and	mention
vertex	shaders	a	couple	of	times	for	different	reasons,	but	we
won’t	dive	into	other	types	of	shaders	at	all.

As	a	programmer,	you’ll	need	to	learn	a	specific	language	to
program	your	shaders.	But	don’t	worry,	they’re	all	pretty	much	C.
Different	APIs	use	different	languages.	For	example,	OpenGL	has
GLSL,	DirectX	has	HLSL,	and	Unity	uses	a	language	created	by
NVIDIA	called	Cg,	which	is	based	on	HLSL,	but	can	be	compiled
into	different	shader	languages	(including	HLSL	and	GLSL).
You’ll	find	it	useful	to	have	NVIDIA	Cg	Reference	at	hand	while
working	on	shaders	in	Unity.

Conclusion

In	this	chapter,	we	learned	that	GPU	is	a	piece	of	hardware

http://developer.download.nvidia.com/cg/index_stdlib.html


specifically	designed	to	perform	graphics-specific	tasks.	In
particular,	we	know	now	that	GPUs	are	extremely	parallel	and
that	provides	a	huge	boost	in	processing,	not	only	for	graphics
but	for	other	types	of	isolated	processing	as	well.	We	also
learned	that	a	Shader	is	a	program	that	runs	on	the	GPU,	they’re
the	tool	we	have	to	achieve	awesome	graphic	effects	without
using	the	CPU.	In	this	book,	we’ll	focus	on	fragment	shaders
because	they	give	us	the	power	to	define	the	final	color	of	the
pixel,	an	essential	feature	for	2D	effects.	Now	it’s	time	to	start
learning	how	to	create	a	shader	in	Unity,	and	how	to	set	up	all
the	required	objects	to	get	it	working.



Using	shaders	in	Unity

This	chapter	will	focus	on	providing	you	with	enough	context
so	that	you’re	able	to	start	your	learning	path.	I’ll	guide	you
through	the	steps	required	to	get	a	custom	shader	up	and
running	inside	Unity	and	we’ll	discuss	the	minimum	boilerplate
structure	needed	to	start	working	on	our	custom	shaders.

How	to	apply	a	shader	in	Unity

Before	we	can	start	playing	around	with	shader	code,	we’ll
need	to	do	some	groundwork	in	Unity.	We’ll	need	to	create	an
object	with	a	renderer,	a	material,	and	a	shader.	We’ll	set	those
things	up	in	this	section	so	that	you’re	ready	to	start	learning.

Create	the	main	GameObject

Unity	comes	with	a	shortcut	for	the	steps	we’re	going	to	use
here,	and	that	is	using	a	Sprite	object.	That	object	is	fine	for	most
uses,	but	it	has	one	issue	that	comes	up	when	working	with
sprites	with	transparencies	(specifically	when	we	work	with
procedural	texture	manipulation),	so	instead	of	using	Sprites
during	the	book	we’ll	create	our	GameObject	from	scratch,	it’s
not	that	difficult	and	the	results	are	pretty	much	the	same.

First	of	all,	you’ll	want	to	create	an	empty	GameObject	by
right-clicking	the	Hierarchy	and	clicking	Create	Empty.	Call	the
object	TestObject.



Add	a	renderer

We	want	to	be	able	to	render	something	to	the	screen.	For
this,	we’ll	use	a	MeshRenderer	and	assign	a	Quad	mesh.	Some	of
you	may	be	thinking	why	are	we	using	a	MeshRenderer	instead
of	a	SpriteRenderer	(that	automatically	sets	a	quad	mesh).	That’s
a	valid	question.	There	is	one	case	where	the	SpriteRenderer	is
going	to	be	problematic,	and	that	is	when	we	want	to	deform	a
texture	that	has	alpha	(transparency)	in	it.	If	you’re	using	a
SpriteRenderer,	Unity	creates	a	mask	with	the	original	alpha
position,	and	when	you	move	the	pixels	inside	the	sprite	it	won’t
honor	that	movement,	creating	things	that	don’t	look	good.	That



said	this	problem	won’t	show	up	until	we	do	procedural
manipulation	of	textures,	which	is	not	in	the	current	book,	but	I
thought	it	would	be	good	to	provide	with	a	configuration	that
Just	Works™.	So	let’s	move	on	and	get	the	MeshRenderer	in
place.

For	that,	we’ll	go	to	the	Inspector	and	choose	Add	Component.

We’ll	write	Mesh	Renderer	in	the	search	box	and	hit	Enter.



For	the	Mesh	Renderer	to	work,	we	need	also	to	add	a	Mesh
Filter,	to	add	it	we	repeat	the	process	of	clicking	Add
Component	and	search	for	Mesh	Filter.



When	working	on	2D,	we	usually	render	textures	inside	of
quadrangle	meshes.	This	is	not	by	any	means	a	rule,	you	can
work	in	2D	with	meshes	of	any	shape,	but	a	quadrangle	is	the
most	basic	figure	that	is	useful	for	rendering	images.	This	is	what
we	usually	call	a	Sprite.	For	specific	deformation	effects,	you	can
use	custom	meshes.	In	fact,	2D	animation	suites,	like	Spine,
allow	you	to	define	custom	meshes	and	transform	them	at	will.
In	our	case	though,	we’ll	use	plain	old	quads.	We’ll	have	to	set
the	Mesh	Filter	to	use	a	Quad,	a	built-in	mesh	that	comes	with
Unity	already.

For	that,	we’ll	click	on	the	little	circle	by	the	Mesh	field.



Then	we	select	Quad	from	the	mesh	list.	You’ll	notice	that	a
magenta	quad	will	show	up	on	screen.	That	means	we’re	on
good	track.



The	reason	we	see	it	in	magenta	is	that	Unity	uses	that	color	to
provide	visual	feedback	that	a	renderer	is	not	using	any
materials	or	that	those	Materials	have	Shaders	that	could	not
compile.	Magenta	is	a	color	that	is	seldom	used,	at	least	in	its
pure	form,	and	turns	out	to	be	a	nice	and	evident	way	of	telling
us	ERROR!!!

As	I	mentioned,	the	reason	why	we	are	seeing	our	quad	in
magenta	is	that	we	don’t	have	any	proper	Material	assigned	to	it.
So	let’s	do	that	now.

In	Unity’s	context	(and	other	engines	as	well),	a	Material	is	a
special	type	of	asset	that	combines	a	Shader	and	a	set	of



Settings	for	that	shader	in	the	form	of	parameters.	Because	of
that,	in	order	to	create	a	Material,	we	first	need	a	Shader.

In	the	Project	tab,	go	to	the	root	of	your	project	and	create	a
folder	called	Shaders.	Right-Click	inside	that	folder	and	select
Create	>	Shader	>	Unlit	Shader.	A	new	Shader	asset	will	be
created	for	you,	give	it	a	name,	say	TestShader,	and	hit	Enter.



Now	that	we	have	our	Shader	(which	we’ll	open	and	analyze
later),	let’s	go	ahead	and	create	a	Material.	For	that,	we’ll	create	a
new	folder	in	the	root	of	our	project	called	Materials.	Again,
Right-Click	inside	the	folder	and	choose	Create	>	Material.	Give	it
a	name,	like	TestMaterial.





Now	we	need	to	assign	the	Shader	we	just	created,	to	the
Material.	To	achieve	that	click	on	the	Material	and	in	the
inspector	click	the	drop-box	next	to	Shader	as	shown	in	the
picture.



You	should	now	see	a	big	list	with	several	shaders,	we’ll	see
how	to	organize	our	shaders	inside	this	list	in	a	few	moments,
but	for	now,	go	to	Unlit	>	TestShader.



You’ll	see	that	the	material	will	turn	white.	That’s	a	good	sign.



Now,	click	on	TestObject	in	the	Hierarchy.	Then	in	the
Inspector,	look	for	the	component	called	Mesh	Renderer	and
open	the	Materials	array.	Put	a	size	of	1	and	drag	and	drop	our
TestMaterial	in	it.



Now	our	Quad	should	turn	white	too.	We	have	our
GameObject	ready.	Now	we	are	ready	to	start	playing	with	our
shaders.

Let’s	take	a	look	at	our	shader.

Now	let’s	open	the	shader	in	the	editor	by	double-clicking	the
asset	we	created	inside	the	Shaders	folder.

When	we	created	the	Shader	(by	clicking	Create	>	Shader	>
Unlit	Shader),	Unity	added	some	default	code	to	it.	What	you	see
is	the	basic	code	needed	to	show	a	texture	on	the	screen.	If	you
scan	through	it	quickly	you’ll	see	there	are	two	functions,	vert
and	frag .	We’ll	take	a	look	at	them	soon,	but	just	as	a	teaser,
those	are	the	vertex	and	fragment	shaders.	Before	getting	into
that	I	wanted	to	explain	how	shaders	are	organized	in	Unity.

The	very	first	line	in	the	shader	file	reads:

Shader	"Unlit/TestShader"

Which	means	that	this	shader	will	be	called	TestShader	and
located	in	the	Unlit	folder.	This	folder	and	name	are	the	ones
you’ll	see	when	you	click	the	Shader	dropdown	in	the	material,
as	we	did	before.

Go	ahead	and	change	the	shader	name	to	something	like:

Shader	"Tests/2D/2DTestShader"

Go	back	to	Unity	and	click	the	material’s	Shader	dropdown.
You’ll	see	the	Tests	folder,	click	it	too,	and	you’ll	see	a	2D	folder
and	then	the	2DTestShader.	As	you	see,	you	can	define	the	exact



path	using	slashes,	and	name	the	folders	between	them.

Now	that	you	know	how	to	name	shaders	and	organize	them,
we’re	going	select	all	the	shader	code	and	delete	it.	Save	the	file
and	then	go	back	to	Unity.

Now	you	see	the	infamous	magenta	color.	Remember	this	is
because	there	are	errors	in	our	shader.	In	this	case,	the	error	is
that	the	shader	we	were	using	no	longer	exists	because	we	just
removed	it.

We	removed	everything	because	I	wanted	to	start	from



scratch	so	you	can	get	a	general	idea	of	what	each	section	of	the
shader	file	does	and	why	we	need	them.

The	structure	of	a	Shader	in	Unity

Being	a	generalistic	engine,	Unity	must	provide	us	with	a	lot	of
flexibility	in	terms	of	how	we	render	our	game.	One	of	the
features	we	need	is	the	ability	to	modify	the	rendering	state
machine	to	a	certain	degree	and	that	has	to	be	multi-platform.

To	solve	this	issue,	Unity	created	a	2-layer	structure	to	handle
our	shaders.

The	first	layer	is	used	to	handle	a	set	of	configurations	required
by	the	rendering	engine	to	perform	several	tasks.	We	do	that
using	a	language	created	by	Unity	and	called	ShaderLab.

As	you’ll	see,	we’ll	have	to	write	some	ShaderLab	code	in	order
to	define	our	vertex	and	fragment	shaders	in	the	next	section,
but	let’s	now	take	a	look	at	the	basic	ShaderLab	structure.

Shader	"Folder/ShaderName"
{
		Properties
		{
				//	…
		}

		SubShader
		{
				Pass
				{
						CGPROGRAM
						//	…
						ENDCG
				}
		}
}



The	first	thing	you’ll	write	was	already	discussed	in	the
previous	lesson.

The	 Shader 	Command

The	Shader 	command	tells	Unity	that	all	the	code	inside
brackets	defines	a	shader.	We	also	need	to	name	the	shader,
and	if	you	recall	we	define	a	path	in	the	shader	Dropdown	of	the
Material	using	slashes.	For	example:

Shader	"Test/2D/2DTestShader"
{
//	…
}

Inside	the	brackets,	we’ll	define	several	sections	that	are	used
to	use	certain	features	of	the	rendering	engine.

The	 Properties 	Command

One	of	the	most	used	are	Properties:	a	set	of	variables	that	get
exposed	to	Unity’s	material	editor,	and	that	you	can	use	to	tune
your	shader	without	touching	the	shader	code	itself.

Those	are	defined	using	the	Properties 	command,	and	each
property	will	have	a	line	defining	its	name,	type	and	default
value.

Shader	"Test/2D/2DTestShader"
{
		Properties
		{
				_MainTex	("Texture",	2D)	=	"white"	{}
		}
}



In	this	example,	we’re	defining	a	property	that	will	allow	us	to
access	a	2D	texture	from	our	shader.	We’re	referencing	that
texture	with	the	name	_MainTex ,	and	if	it’s	not	set	through	the
material	configuration	or	by	code,	it	will	be	a	white	image.

The	 SubShader 	Command

To	be	able	to	write	shaders	for	different	platforms	or	GPUs
with	different	capacities,	Unity	created	a	section	called
SubShader.	What	Unity	does,	is	it	picks	the	first	SubShader	that
will	run	on	the	target	GPU.	In	the	book	we	won’t	dive	into
platform-specific	nightmares,	so	we	won’t	be	dealing	with
SubShaders,	but	is	worth	noticing	that	they	exist.

Shader	"Folder/ShaderName"
{
		//…
		SubShader
		{
		//	You	shader	code	here…
		}
}

The	 Pass 	Command

You	may	now	think	I’m	playing	with	you,	but	we’re	getting
there.	Inside	the	SubShader,	we	can	define	what	is	called	Passes.

When	using	a	specific	SubShader,	Unity	renders	the	object
once	per	Pass,	this	could	be	used	to,	for	example,	grab	the
rendered	screen	in	the	back	of	the	current	sprite	and	do	some
processing	while	blending	with	the	current	object.	This	is	useful
to	create	things	like	a	water	diffraction	effect.



Shader	"Folder/ShaderName"
{
		//…
		SubShader
		{
				Pass
				{
						//	You	pass	code	here…						
				}
		}
}

Again,	we’re	not	going	to	be	messing	with	Passes	in	this	book,
we’ll	usually	have	just	one	SubShader	and	one	Pass.

CGPROGRAM 	and	 ENDCG

Inside	the	Pass	block,	we	need	to	tell	Unity	that	we	want	to	Cg
to	write	our	shader	code.	This	is	done	using	the	CGPROGRAM 	and
ENDCG 	tags	inside	each	Pass.

Shader	"Folder/ShaderName"
{
		//…
		SubShader
		{
				Pass
				{
						CGPROGRAM
						//	.	.	.	Cg	code	for	each	shader	goes	here
						ENDCG
				}
		}
}

We	do	this	because	we’re	going	to	use	Cg	to	make	our	code
multi-platform.	If	you	were	targeting	Linux,	Android	or	some
other	OpenGL-only	target,	you	could	use	GLSL	directly.	To	do
this	you	have	to	write	the	GLSLPROGRAM 	and	ENDGLSL 	tags	instead.



Same	goes	for	HLSL.

Again,	we’ll	be	only	using	Cg	in	the	book	since	it	will	compile
into	GLSL	or	HLSL	(or	the	console	equivalent)	depending	on	the
platform	we’re	exporting	to.

Is	that	it?

Mostly,	this	is	the	base	structure	you	need	to	create	a	shader,
but	it	is	not	functional	yet,	if	you	copy	and	paste	the	previous
code	you’ll	get	a	compiler	error.	We	still	need	to	implement	the
actual	code	for	the	shader	(what	goes	between	CGPROGRAM 	and
ENDCG )	and	that	is	what	we’ll	do	in	the	next	chapter.

Unity’s	built-in	shaders

Unity	has	a	bunch	of	built-in	shaders	that	you	can	select	and
use.	You	can	check	them	all	by	clicking	the	Shader	dropdown	in
the	material	inspector.	The	bad	news	for	newcomers	is	that	you
can’t	modify	those,	you	can’t	even	see	the	source	code,	so	you
don’t	know	what’s	going	on	behind	the	scenes.

The	good	news	is	that	the	code	of	those	shaders	is	available	to
download	in	Unity’s	web	page.

To	get	them:

Head	to	http://unity3d.com/get-unity/download/archive
Search	for	your	Unity’s	version
Pick	your	platform	and	click	Downloads	([Platform])
Click	Builtin	shaders

You’ll	get	a	zip	file	with	all	the	code	for	the	Builtin	shaders.	I
strongly	recommend	that	after	finishing	this	course	you	go

http://unity3d.com/get-unity/download/archive


through	all	of	them	and	try	to	understand	what	they	all	do.
That’s	a	good	way	to	learn	new	shader	types	and	understand
how	shaders	work	in	Unity,	not	only	in	2D	but	in	3D	as	well.	The
Image	Effects	pack	that	comes	with	Unity	is	another	good
source	of	learning	material.

Conclusion

In	this	chapter,	we	learned	how	to	create	a	Shader	script	in
Unity,	how	to	apply	it	to	a	material	and	finally	to	a	sprite.

We	analyzed	the	basic	structure	of	a	Shader	written	using
ShaderLab	and	created	the	structure	for	a	shader	that	does
nothing.

We	also	found	out	that	Unity	shares	its	built-in	shader	code	in
their	webpage.

Now	that	we	finished	with	the	boilerplate	that	Unity	requires
to	create	a	shader,	we	can	actually	start	writing	our	first	useful
shaders.	In	the	next	chapter,	we’ll	learn	the	difference	between
Vertex	and	Fragment	shaders,	and	will	code	a	few	shaders	from
scratch.



Fragment	Shader	basics

This	is	the	first	chapter	with	information	that	will	be	useful	for
the	rest	of	our	shader	programming	career.	We’ll	write	two	key
shaders,	one	that	is	the	most	basic	shader	possible,	a	Solid	Color
shader,	that	will	allow	us	to	draw	a	colored	mesh	on	screen.	For
that,	we’ll	learn	about	RGBA	and	how	we	can	modify	colors.
Then,	we’ll	write	another	shader	that	maps	a	texture	into	our
mesh,	successfully	rendering	a	sprite.	For	that,	we’ll	also	need	to
learn	how	UV	Mapping	works.

What’s	the	difference	between	Vertex	and	Fragment
shaders?

To	display	something	on	a	screen,	if	you’re	using	a	modern
graphics	API,	you’ll	need	at	least	a	vertex	shader	and	a	fragment
shader.

I	want	to	keep	things	simple	in	this	book,	but	I	don’t	want	to
omit	important	information.	There	is	a	concept	in	most	modern
graphics	APIs	called	Graphics	Pipeline.	The	Graphics	Pipeline	is	a
series	of	steps	that	are	performed	one	after	the	other	to	render
an	image.	That’s	all	I	will	say	about	it	because	there	is	a	lot	of
information	on	the	internet	and	other	books	on	this	topic.
Learning	about	it	is	the	right	way	to	get	the	full	picture	of	how
the	data	gets	transformed	from	mathematical	models	into	the
final	pixels.

For	now,	let’s	focus	on	the	data	transformations	that	happen
between	vertex	and	pixel	shaders.

The	first	thing	you	need	to	know	is	that	when	we’re	working



on	2D	games,	we	tend	to	use	quad	meshes	to	render	our	sprites.

A	quad	is	created	using	4	vertices,	and	two	triangles.	You	can
easily	debug	that	using	the	wireframe	view	mode	in	the	Scene
tab	as	I’m	showing.

When	it’s	time	to	render	the	screen,	those	four	vertices	are
sent	to	the	GPU	and	get	processed	by	the	Vertex	Shader.

In	this	shader,	you	have	to	take	care	of	moving	the	vertices
from	model	space	into	world	space	(with	a	simple	instruction
that	we’ll	see	soon)	and	set	several	options	that	will	be	linearly
interpolated	between	connected	vertices	during	the
Rasterization	stage.	Linear	Interpolation	is	an	algorithm	that	is
widely	used	by	programmers	so	I’m	not	explaining	it	here.	If	you
are	not	familiar	with	it,	please	take	a	look	at	the	Linear
Interpolation	Appendix	of	the	book.



After	running	the	Vertex	shader,	we	get	into	the	Rasterization
stage.	In	this	stage	our	geometry	from	mathematical	models,
that	is	our	vertices	and	triangles,	get	transformed	into	fragments
(potential	pixels).	During	Rasterization	all	the	values	that	are	set
in	the	vertices	(colors,	normals,	texture	positions,	etc)	are	linearly
interpolated.

After	rasterization,	we	get	into	the	Fragment	Shader	stage,
where	we	run	our	fragment	shader	on	every	single	fragment
that	was	created	during	Rasterization.

During	this	stage,	we’ll	read	the	texel	(the	corresponding	pixel
from	the	texture)	that	should	go	in	this	screen	pixel.	We	can	also
modify	the	logic	by	which	this	texel	is	retrieved,	or	even	do	some
processing	like	slightly	colorize	it	to	achieve	illumination	or
visual	effects.	We	can	do	a	lot	of	things	when	we	start	thinking
of	ways	of	modifying	the	color	of	each	pixel.

After	the	Fragment	Shader	runs	we’ll	return	a	final	color	for
our	pixel,	using	different	algorithms	according	to	what	we	want
to	do.

After	running	all	of	our	fragment	shaders,	we	end	up	with	the
buffer	of	colors	that	will	go	into	our	monitor	in	this	frame.

This	process	of	running	the	Vertex	Shader,	then	Rasterization
and	Fragment	Shader	is	done	for	each	visible	geometry	in	the
scene	and	will	result	in	our	rendered	frame.

I	hope	you	see	why	fragment	shaders	are	so	important	for	us
now.	For	2D	games,	vertex	shaders	can	do	a	set	of	effects	where
you	can	modify	the	shape	of	the	quad,	but	that’s	not	as	useful	as
being	able	to	control	the	color	of	each	pixel.	When	working	on
Fragment	shaders,	we	have	control	of	the	final	color	of	the	pixel,
and	there	are	several	techniques	that	achieve	really	interesting
effects	by	leveraging	this	feature.



Solid	Color:	Writing	our	very	first	shader	from	Scratch

Now	that	you	have	enough	background,	we	can	start
programming	our	first	shader.	It	will	be	a	simple	one.	We’ll	only
render	a	solid	color	on	our	quad	mesh.

Let’s	start	by	creating	a	new	empty	Shader	and	call	it
SolidColor,	as	we	saw	in	the	previous	chapter.	We’ll	remove	all
the	default	code	and	write	the	boilerplate	code	seen	in	the
previous	chapter	too:

Shader	"2D	Shaders/SolidColor"
{
		Properties
		{
				//	…
		}

		SubShader
		{
				Pass
				{
				CGPROGRAM
				//	…
				ENDCG
				}
		}
}

Defining	the	vertex	and	fragment	methods

The	first	thing	we	need	is	to	tell	Unity	the	names	of	the
methods	that	will	be	used	as	Vertex	and	Fragment	shaders.	This
is	achieved	by	setting	pragma	comments	for	the	preprocessor.

After	the	CGPROGRAM 	and	before	the	ENDCG 	commands,	we’ll	add
the	following:



CGPROGRAM
#pragma	vertex	vert
#pragma	fragment	frag
//	…
ENDCG

The	#pragma 	directive	is	used	to	let	the	rendering	engine	know
which	functions	we	want	to	use	as	vertex	and	fragment	shader.
In	this	case	vert	and	frag,	respectively.	This	is	a	standard	name
for	vertex	and	fragment	functions,	you	can	call	them	whatever
you	want	though,	as	long	as	you	define	the	right	#pragma
directive.

Some	required	data	structures

Our	vertex	function	receives	data	from	the	application	in	a
custom-built	struct	written	by	us.	For	now,	we	only	want	to	pass
the	vertex	position,	so	let’s	add	a	float4 	called	position.

#pragma	fragment	frag

struct	appdata	{
		float4	position	:	POSITION;
};

When	using	Cg	or	HLSL,	we	need	to	tell	Unity	what	we	want	to
do	with	each	member	of	the	struct,	for	that,	we	use	shader
semantics	(For	a	complete	list	of	the	Vertex	Input	and	Fragment
Output	semantics	check	https://docs.unity3d.com/Manual/SL-
ShaderSemantics.html).

In	this	case,	the	float4 	position	needs	to	be	bound	to	the
POSITION 	semantic.	That’s	done	using	a	semicolon	and	then	the
semantic	itself.



The	appdata	struct,	then,	connects	our	application	with	the
vertex	shader.	Now	we	need	to	create	another	struct	that	is	used
as	a	return	value	for	the	vertex	shader,	and	it’s	going	to	be	used
by	Unity	to	define	where	that	vertex	goes	in	the	final	clip
coordinates,	and	also	to	pass	the	fragment	shaders	interpolated
data.	We’ll	learn	more	about	that	data	later	in	the	book	when	we
talk	about	texturing	our	mesh.

We’ll	call	that	struct	vertex	to	fragment	or	v2f ,	and	will	include
a	float4 	position	with	the	SV_POSITION 	semantic.	This	semantic	is
required	by	Unity	and	we’ll	have	to	fill	it	with	the	clip	space
position	of	the	vertex.	Don’t	run	in	desperation	if	you	don’t	know
what	this	is,	Unity	provides	a	built-in	matrix	that	does	this	for	us.

struct	v2f	{
		float4	position	:	SV_POSITION;
};

Now	that	we	have	our	appdata	and	v2f 	structs,	let’s	write	the
vertex	shader.

The	vertex	shader	method

struct	v2f	{
		float4	position	:	SV_POSITION;
};

v2f	vert	(	appdata	v	)	{
		v2f	o;
		o.position	=	UnityObjectToClipPos(v.position);
		return	o;
}

First	of	all,	we	define	the	output	value	of	the	method	as	v2f ,
then	we	define	the	name	of	the	method	to	be	vert ,	and	finally
we	pass	an	appdata	struct	to	it.	Inside	the	method,	we	create	a



v2f 	instance.

Then,	we	set	the	position	using	Unity’s	helper
UnityObjectToClipPos .	This	transforms	our	vertex	from	model	space
into	clip	space.	Internally	it	multiplies	the	vertex	by	the	MVP
matrix.	That’s	the	only	requirement	Unity	(or	graphics	APIs	to	be
more	correct)	has	for	the	vertex	shader,	so	we	can	safely	return
our	v2f 	instance	and	we’re	done.

Don’t	worry	if	you	didn’t	get	the	full	picture	of	what’s	going	on
here,	understanding	that	matrix	multiplication	is	not	completely
needed	for	us	to	produce	nice	effects,	although	I	recommend
you	go	through	some	3D	math	basics	to	understand	what	the
MVP	matrix	is	and	how	it	works.	Check	the	Where	to	go	now?
Chapter	to	find	references.

MVP	stands	for	Model	View	Projection,	and	is	a	matrix	that
contains	three	concatenated	affine	transformations,	one	that
moves	the	vertex	from	model	space	to	world	space,	then	view
space	and	finally	projects	it	into	a	plane,	called	clip	space.	But
that’s	all	I’ll	say	about	this	since	it	goes	out	of	the	scope	of	the
book.

The	fragment	shader	method

fixed4	frag	(v2f	i)	:	SV_Target	{
			return	fixed4(1,0,0,1);
}

Our	frag	method	receives	a	v2f 	struct,	and	returns	a	color	in
the	way	of	a	fixed4 .

In	order	for	it	to	work	(and	this	is	really	important)	we	need	to
tell	Unity	that	the	result	of	this	method	is	a	color,	we	do	that



using	semantics	again.	This	time,	we	use	a	colon	and	the
SV_Target 	semantic.	As	with	the	Vertex	Input	semantics,	you	can
check	Unity’s	documentation	to	find	out	more	about	Fragment
Output	semantics.

Now	to	finish	this,	let’s	make	the	frag	method	return	a	fixed
color.	For	that,	we	create	the	fixed4 	value	by	hand.	Using	(1,	0,
0,	1) 	as	the	parameters	we	should	get	a	solid	red	quad	in	Unity.
If	you	go	to	Unity	you	should	see	a	red	square	on	the	screen.

Yay!	It	works.	If	it	didn’t	work	for	you,	please	go	to	the	book’s
forums	and	post	your	errors,	there	always	be	someone	there	to
help	you.

If	you	know	what	RGBA	color	space	is,	that’s	exactly	the	format
that	this	function	is	returning.



For	those	of	you	who	are	not	familiar	with	RGBA,	the	next
section	will	explain	how	it	works.

The	full	shader	code	is	as	follows:

Shader	"2D	Shaders/SolidColor"	{
				SubShader	{
								Pass	{
												CGPROGRAM
												#include	"UnityCG.cginc"
												
												#pragma	vertex	vert
												#pragma	fragment	frag

												struct	appdata	{
																float4	position	:	POSITION;
												};

												struct	v2f	{
																float4	position	:	SV_POSITION;
												};

												v2f	vert	(appdata	v)	{
																v2f	o;
																o.position	=	UnityObjectToClipPos(v.position);
																return	o;
												}

												fixed4	frag	(v2f	i)	:	SV_Target	{
																return	fixed4(1,0,0,1);
												}

												ENDCG
								}
				}
}

Understanding	RGBA

Before	we	continue	working	on	shader	code	let’s	stop	to	talk
about	color	representation	in	computer	graphics.	As	we	saw	in
the	SolidColor 	shader,	we	represent	a	color	with	a	vector	of	four
normalized	floating	point	numbers.



Each	vector	component,	that	is	x ,	y ,	z 	and	w ,	are	bound	to
colors,	Red,	Green,	Blue,	and	Alpha,	or	transparency.	Since	it’s	a
normalized	vector,	each	value	goes	from	0 	to	1 .	Having	these
components	normalized	makes	color	math	easier	since	we	can
combine	them	by	multiplying	them,	or	even	modulating	with
other	functions	and	always	stay	in	range.

float4	red	=	float4(1,0,0,1);

In	this	example,	we	are	defining	a	float4 	variable	called	red
and	initializing	it	to	(1,0,0,1) .	The	reason	why	this	represents	the
color	red	is	that	the	value	for	the	red	channel	(the	first
component)	of	the	vector	is	one,	while	the	green	and	blue
channels	are	zero.	The	alpha	channel	(the	fourth	component	of
the	vector)	determines	the	opacity,	which	is	not	so	useful	now
since	we	haven’t	talked	about	Alpha	Blending.	A	value	of	one	in
the	alpha	channel	means	the	color	is	fully	opaque,	with	no
transparency	applied.	In	the	future,	we’ll	be	able	to	use	this
channel	to	give	transparency	to	our	pixel	and	blend	it	with
existing	colors	from	previously	rendered	objects.

As	an	aid	to	programmers,	we	can	retrieve	vector	components
not	only	by	using	x ,	y ,	z 	and	w ,	but	also	r ,	g ,	b ,	a .	In	that	way	is
much	easier	to	read	the	functions	we	write	to	process	colors.

float4	red	=	float4(1,0,0,1);
red.x;	//	returns	1

red.r;	//	returns	1	too.

red.g;	//	returns	0
red.b;	//	returns	0
red.a;	//	returns	1

Let’s	see	some	examples:



float4	red	=	float4(1,0,0,1);
float4	green	=	float4(0,1,0,1);
float4	blue	=	float4(0,0,1,1);
float4	white	=	float4(1,1,1,1);
float4	black	=	float4(0,0,0,1);
float4	magenta	=	float4(1,0,1,1);
float4	yellow	=	float4(1,1,0,1);
float4	cyan	=	float4(0,1,1,1);

Those	are	the	colors	you	get	by	using	channels	to	their	full
capacity,	but	if	we	use	numbers	between	zero	and	one,	we	can
represent	way	more	colors,	let’s	take	a	look.

For	example,	if	you	want	to	make	a	gray	that	is	halfway
between	black	and	white.

float4	mid_gray	=	float4(0.5,0.5,0.5,1);

Then,	for	example,	you	can	tone	that	mid	gray	to	get	a	reddish
mid-gray	increasing	the	red	channel	in	0.1 .

float4	redish_mid_gray	=	float4(0.6,0.5,0.5,1);

I	suggest	you	explore	the	RGBA	space	modifying	the	SolidColor
shader	we	created	in	the	previous	section.	In	this	way,	you’ll	get
a	better	picture	of	what’s	going	on.

Playing	with	colors

The	 lerp 	function

Now	that	we	have	a	better	understanding	of	how	colors	work
in	the	context	of	computer	graphics,	let’s	introduce	some	useful
functions	we	can	use	to	play	with	them.



First	of	all,	we	want	to	talk	about	the	lerp	function.	This
function	allows	you	to	do	linear	interpolation	between	two
values.	That	is	mixing	two	values	using	a	weight	variable.	You
control	the	amount	of	each	value	that	goes	into	the	final	mix	by
setting	the	weight	to	a	number	between	0 	and	1 .	Let’s	test	this
out	in	our	SolidColor 	shader.

Inside	the	fragment	shader	we’re	going	to	define	two
variables:	col1 	and	col2 .

float4	col1	=	float4(1,0,0,1);	//	Red
float4	col2	=	float4(0,1,0,1);	//	Green

Then,	we	want	to	replace	the	return	line	from:

return	fixed4(1,0,0,1);

to:

return	lerp(col1,	col2,	0.0);

Now	what	we	see	is…	still	red.	That’s	because	our	first	color	is
red,	and	the	weight	variable	is	set	to	0.0 ,	so	the	result	is	full	red.	If
we	change	the	weight	variable	to	1 ,	we	get	full	green.

But	if	we	put	0.5 ,	or	0.25 ,	we	get	a	color	that	is	the	weighted
average	of	those	two	colors.

If	you’re	working	with	OpenGL,	in	GLSL	this	method	is	called
mix() .

The	 _Time 	struct



This	is	our	first	approach	to	being	able	to	create	colors	by	code,
so	let’s	introduce	a	concept	that	will	be	really	useful	in	the
future.	Unity	provides	some	built-in	variables	that	you	can	access
to	in	the	shaders,	a	really	important	one	is	the	_Time 	struct.	It	is	a
float4 	struct,	that	holds	several	precomputed	time	scales	inside.
If	t	is	the	current	time	since	we	started	the	game:

The	x 	component	contains	t 	divided	by	20 .

The	y 	component	contains	t .

The	z 	component	contains	t 	multiplied	by	to	2 .

And	the	w 	component	contains	t 	multiplied	by	3 .

These	values	can	be	used	to	create	animations	inside	our
shaders.

Let’s	modify	our	weight	value	in	the	shader	to	use	_Time.y
instead	of	a	fixed	number.	To	visualize	this	change,	we	need	to
run	our	project.	Go	ahead	and	hit	play.

return	lerp(col1,	col2,	_Time.y);

That	was	fast.	What	is	happening	is	that	it	takes	one	second	to
go	from	red	to	green,	since	at	the	beginning	_Time.y 	is	0 ,	and
goes	up	frame	by	frame,	until	the	first	second,	when	_Time.y
becomes	1 .	After	that	_Time.y 	is	greater	than	one,	so	the	linear
interpolation	returns	the	last	value	(green).

We	can	make	this	animation	twenty	times	slower	by	changing
_Time.y 	to	_Time.x .	When	we	click	play	we	get	20	seconds	of
slowly	changing	from	red	to	green	because	_Time.x	=	t	/	20 .



The	 sin 	function

What	if	we	want	to	make	this	animation	bounce	forever	so
that	it	slowly	comes	back	to	red	after	hitting	green?	If	you
remember	your	trigonometry	classes,	you’ll	know	that	the	sine
function	transitions	softly	and	infinitely	between	minus	one	and
one.

We	can	rely	on	it	to	add	perpetual	animations	to	our	shaders.

return	lerp(col1,	col2,	sin(_Time.y));

Nice!	It’s	animated,	but…	it	stays	in	red	for	a	long	time,	can	you
identify	why?	The	reason	is	that	since	sin 	goes	from	minus	one
to	one,	the	negative	part	of	it	is	always	showing	red	because	the
linear	interpolation	shows	intermediate	values	only	when	the
parameter	goes	from	zero	to	one.	In	this	case,	we’re	below	zero,
so	the	linear	interpolation	returns	red	always.

In	order	to	make	this	work	as	we	may	expect,	we’ll	have	to
normalize	this	sin	and	make	it	go	from	0 	to	1 .



You	do	this	by	applying	some	simple	math	let’s	see,	we	know
sine	goes	from	minus	one	to	one.

-1	<=	sin(x)	<=	1

Then,	if	we	add	one	to	it,	it	will	go	from	zero	to	two.

0	<=	sin(x)	+	1	<=	2

Now,	if	we	divide	this	by	2	(which	won’t	invert	the	signs	since
two	is	positive),	we	end	with	our	sine	going	from	0	to	1.	That’s
what	we	wanted.

0	<=	(sin(x)	+	1)	/	2	<=	1

When	we	apply	this	math	to	our	shader,	we	get	a	nice	smooth
transition	between	red	and	green.

return	lerp(col1,	col2,	(sin(_Time.y)	+	1)	/	2	);

For	this	specific	case,	Unity	also	provides	_SinTime 	and	_CosTime
built-in	structs,	that	contain	precomputed	sines	and	cosines	of	t .
You	can	read	more	about	Unity’s	built-in	variables	in	the
documentation:
http://docs.unity3d.com/462/Documentation/Manual/SL-
BuiltinValues.html

You’ll	learn	extensively	about	the	sine	function	in	the
Procedural	Texture	Manipulation	book.

UV	Mapping

http://docs.unity3d.com/462/Documentation/Manual/SL-BuiltinValues.html


The	shader	we’ll	write	in	the	next	section	will	display	a	Texture
in	our	mesh.	This	is	the	first	step	required	to	show	a	2D	sprite.
But	before	we	can	do	that,	we	need	to	discuss	one	more	thing:
UV	Mapping.

UVs	are	two-component	vectors	with	a	special	semantic:	they
represent	the	2D	coordinates	of	a	texture.

Think	of	a	squared	image	as	a	rectangle	in	a	coordinate
system,	the	x 	axis	(U)	represents	the	horizontal	position,	and	the
y 	axis	(V)	the	vertical	position.

In	order	to	be	useful	to	operate	on	them,	UV	vectors	are	also
normalized,	so	their	components	go	between	0 	and	1 .	The
vector	(0,0) 	represents	the	bottom-left	pixel	of	the	texture.	The
vector	(1,1) 	is	the	top-right	pixel.	(0.5,	0,5) 	is	the	pixel	in	the
center	of	the	texture.

This	is	really	handy	because	we	don’t	have	to	know	the
resolution	of	the	texture	in	order	to	access	it,	instead,	we	can
calculate	the	specific	pixel	we	want	to	retrieve	by	using	values
between	0 	and	1 .

The	technique	is	called	UV	Mapping	because	we	use	UV
coordinates	to	map	a	texture	into	a	mesh.	In	order	to	do	that,	we
define	a	UV	value	for	each	vertex	of	the	mesh,	that	value	is	then
passed	to	the	vertex	shader,	and	finally	to	the	rasterizer	to	get	it
interpolated	and	tell	the	fragment	shader	which	pixel	in	the
texture	corresponds	to	a	given	fragment.

You	will	also	find	that	books	or	articles	refer	to	pixels	in	a
texture	as	texels,	which	is	more	correct	since	we’re	not	talking
about	screen	pixels,	but	something	stored	in	a	texture	that	in
the	future	may	become	a	pixel.



Quad	UV	mapping

As	we	just	saw,	every	mesh	you	want	to	project	a	texture	into
needs	UV	coordinates	to	be	set	in	the	vertices.	This	is	a	standard
practice	across	all	the	different	graphics	APIs,	so	our	Quad	mesh
that	Unity	provides	already	has	UV	values	assigned	to	its
vertices.	Let’s	take	a	look.

A	Quad	mesh	is	constructed	using	two	triangles,	typically
defined	by	linking	4	vertices.

Each	of	these	vertices	have	a	UV	value	assigned	to	them,	the
bottom	left	vertex,	is	assigned	with	the	UV	(0,	0) ,	the	top	left
with	(0,	1) ,	the	top-right	with	(1,	1) 	and	the	bottom	right	with
(1,	0) .



Those	values	are	interpolated	in	the	rasterization	stage,	and
the	fragment	shader	will	receive	interpolated	UV	values	that	will
provide	all	the	intermediate	UVs	automagically.

It’s	useful	to	notice	that	you	can	actually	modify	those	UVs	in
the	vertex	and/or	fragment	shaders	in	order	to	alter	how	those
texels	are	retrieved	(or	sampled	in	computer	graphics	jargon).

Wrapping	Modes

One	more	important	thing	to	discuss	is	what	happens	if	we
overflow	a	UV	component.	By	overflowing	I	mean,	we	sample	a



texture	using	a	number	that	is	greater	than	1 	or	smaller	than	0 .

In	the	RGB	space,	this	makes	no	sense,	there	is	nothing
beyond	1 ,	because,	as	you	may	recall,	1 	is	the	maximum	value
an	RGB	channel	can	take.	So	if	we	exceed	1 ,	it	just	gets	clamped
to	1 	again,	and	the	same	if	we	go	below	0 .	But	in	UV	mapping
the	story	is	different.	We	can	actually	tell	the	graphics	card	to
behave	in	some	useful	ways.

If	you	select	a	sprite	or	texture	in	the	Project	tab	and	take	a
look	at	the	inspector,	you’ll	see	there	are	many	more	options	to
play	with.	For	now,	we	want	to	focus	on	Wrap	Mode.

Wrap	Mode	is	used	to	make	a	decision	about	what	to	do	when
we	exceed	the	bounds	of	a	texture’s	UVs.

By	default,	it	is	set	to	Clamp	mode.	This	mode	will	repeat	the
last	pixel	when	we	exceed	1 	or	the	first	pixel	when	we	go	below
0 .	Similar	to	what	happens	with	the	RGB	color	space.



An	interesting	thing	happens	when	we	change	Clamp	to
Repeat,	which	instead	of	using	the	last	pixel,	it	will	go	back	to
the	first	one,	creating	an	infinite	loop.



Another	option	is	Mirror,	which	will	invert	the	image	whenever
you	exceed	1 .	This	can	be	really	useful	to	quickly	break	repetition
in	a	sprite.



In	recent	versions	of	Unity,	you	can	even	set	a	different
wrapping	mode	for	each	axis,	being	able	to,	for	example,	Repeat
in	u 	and	Clamp	in	v .



In	this	way,	we	can	increase	the	UV	sampling	parameter
constantly	and	always	have	something	coherent	to	show.	This
will	be	really	useful	for	the	first	exercise	you’ll	work	on	at	the	end
of	this	chapter.

In	these	examples,	I’m	multiplying	the	uv	by	4 ,	so	that	instead
of	sampling	from	(0,0) 	to	(1,1) 	I’m	sampling	to	(4,4) .	In	this	way,
I	exceed	the	[0,1] 	range	and	I	can	show	you	how	the	Wrap	Mode
behaves	when	overflowing.

Now	you	know	all	you	have	to	know	to	write	a	shader	that
renders	a	texture,	let’s	do	it!



Writing	a	Shader	that	displays	a	Texture

This	is	the	first	step	towards	our	long	journey	creating	unique
looking	games.	We’re	going	to	create	a	shader	that	receives	a
texture	as	a	parameter	and	displays	it	on	the	screen.	This	is	the
basic	functionality	we	need	to	display	a	sprite.

First	of	all,	let’s	duplicate	our	SolidColor 	shader	and	name	it
Texture	and	open	it.	Change	the	name	to	"2D	Shaders/Texture" .

Main	Texture	parameter

When	we	made	an	introduction	to	the	ShaderLab	language,
we	introduced	the	concept	of	Properties.	In	order	to	pass	data	to
our	shader	(in	this	case	the	texture	itself),	we	have	to	rely	on	a
Property.	We’ll	have	to	create	a	property	for	this	texture	inside
the	Properties 	block.

We’ll	call	this	property	_MainTex 	which	is	the	standard	name	for
main	textures	in	Unity.

Shader	"2D	Shader/Texture"
{
		Properties
		{
				_MainTex	(	"Main	Texture",	2D	)	=	"white"	{}
		}

The	structure	is	pretty	simple,	we	write	the	name	of	the
property,	_MainTex ,	then	between	parenthesis	we	define	the
external	name	and	the	property	type,	and	finally	the	default
value.

The	external	name	is	used	to	identify	the	property	in	Unity’s
editor	in	a	more	human-readable	way,	any	string	should	be	fine



for	this	as	long	as	it	provides	the	user	of	the	shader	an
understanding	of	what	the	property	is.

There	are	several	property	types.	You	can	take	a	look	at	all	of
them	in	Unity’s	documentation.	In	our	case,	we	want	to	use	the
type	called	2D ,	which	is	used	for	two-dimensional	textures	like
the	sprites	we	want	to	render.

Then,	we	define	a	default	value	of	white	and	we	put	brackets.
Those	brackets	were	used	before	Unity	5	to	pass	some
parameters	to	the	texture	which	we	won’t	be	doing.

Now	that	we	have	our	property	let’s	write	the	shader	code.

Changes	to	the	 appdata 	struct

In	the	previous	shader	we	wrote,	we	used	appdata	to	get	the
position	of	the	vertex.	We’ll	do	that	here	as	well	because	it’s
required	by	Unity,	but	we	will	also	add	a	float2 	field	called	uv ,
which	will	be	the	uv	coordinate	for	the	vertex.	In	the	previous
section,	we	learned	what	UV	coordinates	were.	Here	is	where	we
put	that	theory	in	practice.

struct	appdata	{
				float4	position	:	POSITION;
				float2	uv	:	TEXCOORD0;
};

We	want	to	tell	Unity	that	the	uv 	member	is	actually	the	place
where	we	want	it	to	put	the	uv	coordinate	from	the	mesh,	for
this	we	use	the	semantic	TEXCOORD0 .	Remember	that	our	Quad
mesh	already	comes	with	a	built-in	set	of	uvs.	This	semantic	is
the	glue	between	our	shader	and	the	mesh.	That’s	it	for	the
appdata	struct.

http://docs.unity3d.com/Manual/SL-Properties.html


Changes	to	the	 v2f 	struct

Our	v2f 	struct,	the	parameter	to	our	frag	function,	needs	the
uv	information	as	well,	so	we’ll	add	it	there	again	as	a	float2 ,
using	the	same	semantic	TEXCOORD0 .

struct	v2f	{
				float4	position	:	SV_POSITION;
				float2	uv	:	TEXCOORD0;
};

Defining	the	 _MainTex 	variable	inside	our	shader

This	is	a	really	common	source	of	errors,	so	pay	special
attention.	When	we	define	properties	in	ShaderLab	(in	our	case
_MainTex ),	they’re	just	exported	to	Unity’s	editor	but	are	not
defined	inside	the	shader	(that	is	between	CGPROGRAM 	and	ENDCG )	to
be	used.	You’ll	have	to	define	it	yourself.

struct	v2f	{
				float4	position	:	SV_POSITION;
				float2	uv	:	TEXCOORD0;
};

sampler2D	_MainTex;

v2f	vert(appdata	v)
{

Since	we’re	using	a	2D	texture,	the	data	type	for	it	has	to	be
sampler2D .	The	name	of	the	variable	needs	to	match	the	name	of
the	property	you	defined	in	the	Properties 	block.	In	this	case,	it’s
obviously	_MainTex .

The	vertex	shader



We	don’t	want	to	do	much	in	our	vertex	shader,	we	just	want
to	do	a	pass-through	to	the	fragment	shader.	The	vert	is
basically	the	same	thing	as	the	one	used	in	our	SolidColor 	shader,
but	with	the	addition	of	passing	the	uv 	member	to	the	fragment
shader.

v2f	vert	(appdata	v)	{
				v2f	o;
				o.position	=	UnityObjectToClipPos(v.position);
				o.uv	=	v.uv;
				return	o;
}

The	fragment	shader

This	is	where	the	magic	will	actually	happen.	Assigning	the	uv
value	in	the	vertex	shader	set	everything	up	so	that	the
rasterized	could	interpolate	the	intermediate	uv	values	required
for	each	fragment.	Now	it’s	time	to	use	those	interpolated	values
in	the	fragment	shader	to	get	the	corresponding	pixel.	This
process	is	called	a	texture	lookup.	For	this	we	need	to	make
some	changes	to	our	frag 	function:

fixed4	frag	(	v2f	i	)	:	SV_Target	{
				fixed4	col	=	tex2D(_MainTex,	i.uv);
				return	col;
}

The	texture	lookup	is	achieved	in	the	fragment	shader	by
using	the	tex2D 	method,	that	expects	a	sampler2d 	and	a	uv 	pair	as
a	float2 	and	returns	a	float4 	that	contains	the	color	for	that	texel.
There	are	several	possible	parameter	combinations	in	the	tex2d
method,	we’re	only	going	to	use	this	one	in	this	book	series,	but
be	sure	to	check	Nvidia’s	documentation	on	tex2d.

http://http.developer.nvidia.com/Cg/tex2D.html


In	terms	of	the	shader,	we’re	done	now.	There	are	still	some
things	that	we	need	to	do	in	Unity	to	see	the	sprite	though.

Setting	up	the	material

Let’s	create	a	new	material	called	Texture	and	select	the	2D
Shaders/Texture 	shader.

In	the	inspector,	you	should	now	see	that	there	is	an	option	to
set	up	the	Main	Texture	from	the	editor,	and	the	material	should
look	white	(remember	we	set	white	as	the	default	value	for
_MainTex ).	You	can	drag	and	drop	a	texture	from	the	Project	tab
into	the	square	that	says	None	(Texture).



Then	is	just	a	matter	of	telling	our	GameObject	to	use	this	new
material.

We	now	have	a	sprite	rendering	on	our	screen.	I	know	what
you’re	thinking:	this	is	a	lot	of	work	for	something	you	can	do	in



two	clicks	using	the	Sprite	GameObject	in	Unity,	and	I	would
normally	agree	if	we	were	only	looking	for	this.	But
understanding	how	the	shader	that	the	Sprite	Renderer	uses
works	is	essential	to	getting	into	the	good	stuff	later.	Now	let’s
try	to	put	the	stuff	we	learned	into	practice	with	an	exercise.

Exercise	1:	Side	Scroller	Background

Congratulations!	Now	you	have	enough	knowledge	to	write	a
shader	that	is	useful	for	a	game!	In	this	case,	I’ll	ask	you	to	take
your	time	to	create	the	background	of	a	side	scroller	game.

I	assume	you	already	downloaded	the	source	code	for	the
exercises	if	you	haven’t	this	is	the	time	to	go	ahead	and	do	it.

Once	you	have	the	source	code	downloaded,	open	the	project
called	Exercise	1	-	Side	Scroller	Background .

The	idea	is	to	use	the	texture	shader	we	created	in	the
previous	section	and	modify	it	to	create	a	background	that
scrolls	infinitely.

Also,	you’ll	need	to	be	able	to	set	the	speed	by	which	it	moves
using	a	shader	Property.

You	can	find	the	solution	to	this	exercise	at	the	end	of	the
book.

Conclusion

This	chapter	was	full	of	new	and	interesting	stuff,	wasn’t	it?
We	covered	the	basics	of	fragment	shader	usage.	We	learned
the	difference	between	Vector	and	Fragment	shaders,	how
colors	are	represented	in	the	graphics	card	in	RGBA,	how	to	mix



them	to	create	new	colors	and	how	textures	get	mapped	to
vertices	using	UV	coordinates.

We	also	wrote	some	shaders.	We	implemented	a	shader	that
creates	a	solid	color	for	the	whole	sprite	and	created	a	shader
that	displays	an	opaque	texture.	You	also	worked	on	an
assignment	to	create	a	side-scroller	background	with	a	variable
to	handle	its	speed.	You	can	consider	your	shader	programming
path	started	for	real!

In	the	next	chapter,	we’ll	start	learning	about	how	to	mix
colors	in	different	ways,	this	is	called	Blending	modes.	We’ll	learn
how	different	math	operations	affect	the	mixing	of	colors,	and
we’ll	also	learn	how	to	make	our	sprites	use	transparency.



Blending	Modes

Up	until	now,	we’ve	been	dealing	with	just	one	source	color
(one	created	by	us	or	fetched	from	a	texture)	but	now	it’s	time	to
start	mixing	more	than	one	color.	For	that,	we	have	Blending
Modes.	This	chapter	will	cover	how	to	blend	colors	inside	a
shader	(that	is	two	colors	created	by	us	or	two	fetched	from
textures)	and	blending	with	the	existing	contents	of	the	screen
(the	background).

The	theory	behind	Blending	Modes

Now	that	we	have	a	decent	amount	of	background	on	how	to
create	basic	shaders,	is	time	to	learn	about	Blending	Modes.
Imagine	you	have	two	colors,	let’s	say,	red	and	green,	and	you
want	to	combine	them.	How	many	ways	do	you	think	there	are
to	combine	them?



Stop	counting	already.	There	are	infinite.	In	computer
graphics,	we	represent	colors	as	vectors	of	3	or	4	components,
and,	as	you	may	already	have	guessed,	we	can	use	any
mathematical	operation	we	normally	use	with	vectors.	Those
operations	will	have	different	results	in	what	colors	we	see.

Blending	modes	are	nothing	more	than	a	bunch	of
mathematical	functions	that	ended	up	being	really	useful	to	mix
colors	and	create	effects.	Let’s	see	what	are	the	typical	ones.

Additive

The	most	basic	blending	mode	is	additive,	we	add	the	colors,



component	by	component,	and	end	up	having	a	third	color	that
is	the	sum	of	the	previous	two.	If	you	think	about	what	happens
numerically	when	you	sum	two	colors,	you’ll	notice	that	the
result	is	always	closer	to	white	because	colors	go	between	0 	and
1 	(they’re	positive)	so	adding	them	will	yield	something	that	is
closer	to	1 	than	each	color	alone.

For	example,	if	we	add	a	mid	gray	(0.5,	0.5,	0.5)	with	a	quarter
gray	color	(0.25,	0.25,	0.25),	you’ll	get	a	three	quarter	gray	(0.75,
0.75,	0.75),	which	is	closer	to	white.

The	consequence	of	this	property	is	that	using	an	Additive
blending	mode	is	really	useful	to	light	things	up.	When	you	see
particle	systems	in	games	that	look	like	really	bright	(like	bolts	of
lightning,	fireballs,	magic	missiles,	etc)	they’re	almost	always
using	additive	blending	mode.



Multiply

Another	useful	blending	mode	is	Multiply,	in	which	we
multiply	both	colors	component	by	component.	Again	if	we
analyze	what	happens	numerically,	you’ll	notice	that	the	result
of	multiplying	two	colors	is	almost	always	making	the	color
closer	to	black.	This	is	because	multiplying	a	number	by
something	between	zero	and	one	always	returns	a	smaller
number	(excluding	one,	that	doesn’t	change	the	original
number).

Using	the	example	above,	(0.5,	0.5,	0.5)	by	(0.25,	0.25,	0.25)
results	in	(0.125,	0.125,	0.125)	which	is	closer	to	black.	This
blending	mode	is	super	useful	to	create	shadows.

	####	Other	Blending	Modes



There	are	several	other	blending	modes	that	are	quite
common.	One	thing	I	usually	suggest	to	my	students	is	that
besides	knowing	several	blending	modes,	you	learn	how	they’re
called	in	Photoshop	since	artists	usually	refer	to	them	with	that
name.	For	example,	in	Photoshop,	Additive	is	known	as	Linear
Dodge.	Here	is	a	table	of	the	math	behind	some	of	the	blending
modes	available	in	Photoshop	(Source:
http://photoblogstop.com/photoshop/photoshop-blend-modes-
explained	A	really	nice	article	to	understand	blending	modes	in
Photoshop)	you	can	always	refer	to	this	when	asked	from	an
artist	to	apply	a	certain	blending	mode	on	a	layer.

Blending	Two	Textures

The	easiest	thing	we	can	do	to	experiment	with	Blending
Modes	is	extending	our	Texture 	shader	to	receive	two	textures
and	combine	them.	Go	ahead	and	duplicate	the	Texture	shader
and	rename	it	to	TwoTextures .	Don’t	forget	to	change	the	name
inside	the	shader	after	the	Shader 	command.

First	of	all,	add	a	new	property	called	_SecondTexture .

Properties	{
				_MainTex	(	"Main	Texture",	2D	)	=	"white"	{}



				_SecondTexture	(	"Second	Texture",	2D	)	=	"white"	{}
}

After	that,	we	also	add	the	sampler2D 	variable	associated	to	the
_SecondTexture 	property.

sampler2D	_MainTex;
sampler2D	_SecondTexture;

In	the	fragment	shader,	we’ll	want	to	sample	a	second	color,
taken	from	_SecondTexture 	so	that	we	can	blend	them.

fixed4	frag	(v2f	i)	:	SV_Target
{
		fixed4	col1	=	tex2D(_MainTex,	i.uv);
		fixed4	col2	=	tex2D(_SecondTexture,	i.uv);
		return	col1;
}

In	col1 	we	have	the	color	of	the	texel	in	_MainTexture ,	in	col2 	we
have	the	color	of	the	texel	in	_SecondTexture .	Now	we	can	apply
the	different	blending	modes	we	learned	in	the	previous	section.

For	example,	we	can	add	both	textures	and	see	what	happens.

fixed4	frag	(v2f	i)	:	SV_Target
{
		fixed4	col1	=	tex2D(_MainTex,	i.uv);
		fixed4	col2	=	tex2D(_SecondTexture,	i.uv);
		return	col1	+	col2;
}



We	can	also	multiply	them:

fixed4	frag	(v2f	i)	:	SV_Target
{
		fixed4	col1	=	tex2D(_MainTex,	i.uv);
		fixed4	col2	=	tex2D(_SecondTexture,	i.uv);
		return	col1	*	col2;
}

Or	we	can	apply	screening,	which	is	a	soft	additive	blending
mode.

fixed4	frag	(v2f	i)	:	SV_Target
{
		fixed4	col1	=	tex2D(_MainTex,	i.uv);
		fixed4	col2	=	tex2D(_SecondTexture,	i.uv);
		return	1	-	(1	-	col1)	*	(1	-	col2);
}



In	the	next	section,	we’ll	learn	how	to	blend	one	texture	with
the	pixels	already	rendered	behind	it	using	ShaderLab	Blend 	and
BlendOp 	commands.

Blending	with	the	Screen

After	experimenting	a	bit	with	blending	two	textures	inside	an
object,	we	will	want	to	extend	this	to	the	screen.	It’s	a	shame
that	we	don’t	have	the	same	amount	of	flexibility	for	this,	but	we
can	do	a	lot	anyway.

When	the	fragment	shader	is	done,	Unity’s	graphics	pipeline
has	to	decide	how	to	merge	the	colors	we	returned	in	it	with	the
existing	colors	in	the	buffer.	For	that,	we	use	ShaderLab’s	Blend
command.	Let’s	take	a	look	at	how	this	works,	but	first,	we	need
to	do	some	setup.

First	of	all,	duplicate	the	Texture 	Shader	and	call	it	BlendingModes
and	remember	to	change	its	name	in	the	shader	code	to	"2D
Shaders/Blending	Modes" .

Now	duplicate	the	Texture 	material	and	rename	it	to
BlendingModes 	too.	Also,	change	the	shader	of	the	material	to	the
one	we	just	created.

The	last	thing	you’ll	have	to	do	is	duplicating	the	GameObject



we’re	using	to	test	things.	We’ll	also	have	to	assign	the	new
material	to	it	in	the	MeshRenderer .

The	Blend	command

Open	up	the	BlendingModes 	shader	in	your	text	editor	and	before
the	Pass 	command,	let’s	add	Blend	Off .	That’s	the	default
behavior,	which	won’t	do	any	blending,	it	will	overwrite	the
existing	pixel	in	the	buffer	with	the	one	we’re	returning	in	our
frag	function.

SubShader	{
				Blend	Off							

				Pass	{

If	we	check	at	the	reference	for	the	Blend 	command,	we’ll	see
there	are	several	parameter	combinations	to	it.	Let’s	take	a	look
at	the	first	one,	which	is	Blend	SrcFactor	DstFactor .

As	the	documentation	says,	the	color	that	we	return	in	our	frag
shader	is	multiplied	by	SrcFactor ,	the	color	on	the	screen	is
multiplied	by	DstFactor 	and	then	they’re	added	together.

It	is	helpful	for	me	to	think	about	the	math	function	that	we
end	up	having	if	we	choose	one	factor	or	the	other.

final_color	=	my_color	*	SrcFactor	+	screen_color	*	DstFactor

For	example,	to	make	additive	blending,	what	we	want	is	to
have	both	colors	added	together.	So	writing	the	equation	shows
that	both	factors	have	to	be	one.

https://docs.unity3d.com/Manual/SL-Blend.html


final_color	=	my_color	*	One	+	screen_color	*	One

The	default	value	is	Blend	Off ,	which	should	look	like	this:

As	you	can	see	GameObject	2 	is	on	top	of	GameObject 	and	it	hides	it,
because	Blend	Off 	will	just	overwrite	the	existing	pixel	value.

If	we	change	Blend	Off 	to	Blend	One	One ,	we’ll	see	how	our	image
on	top	is	added	to	the	one	we	already	had.

SubShader	{
				Blend	One	One							

				Pass	{

As	you	can	see,	the	image	is	lighter,	this	is	because	we’re



adding	it	to	itself.	Let’s	move	the	top	one	to	check	the
intersection	and	see	how	this	works.

I	suggest	you	experiment	reviewing	the	reference	and	see
what	you	can	find,	to	understand	the	effects	on	the	image,	you
can	always	set	one	factor	to	Zero 	and	try	stuff	with	the	other,	and
then	combining	them.	It’s	interesting	how	much	you	can
achieve.

There	are	other	versions	of	the	Blend 	command,	for	example,
you	can	also	pass	4	different	factors	and	it	will	be	the	same	as
before,	but	differencing	alpha,	this	expands	our	possibilities,
because	alpha	is	one	thing	on	its	own	and	it’s	nice	to	be	able	to
do	computations	separately.	I	encourage	you	to	experiment
with	this.

The	 BlendOp 	command

Adding	the	result	of	the	multiplications	is	just	the	default
behavior,	but	we	may	want	to	do	another	operation	between
both	colors.	There	is	another	command	called	BlendOp 	that	allows
you	to	change	this	behavior.



Instead	of	adding	let’s	subtract	both	colors.	For	that,	below
Blend	One	One ,	we’ll	write	BlendOp	Sub .

SubShader	{
				Blend	One	One							
				BlendOp	Sub

				Pass	{



We	can	also	play	with	the	factor	here,	for	example	by	squaring
the	SrcColor 	and	subtracting.

SubShader	{
				Blend	SrcColor	One							
				BlendOp	Sub

				Pass	{

With	BlendOp 	we	also	have	the	option	to	pass	a	second
parameter	for	the	alpha	operator.	Which	opens	up	way	more
possibilities.

I	insist	on	taking	your	time	to	explore	this	space	of	possibilities,
keeping	in	mind	what	is	the	actual	mathematical	function	that
is	being	applied	and	get	a	better	understanding	of	the	impact	of
each	combination.	This	will	help	you	create	complex	effects	in
the	future.

Alpha	Blending

Now	that	we	learned	how	blending	works	with	the	existing
screen	buffer,	we’re	in	the	position	of	being	able	to	create
transparent	sprites.	We’ll	do	this	by	applying	what’s	called	Alpha



Blending.

Alpha	Blending	is	a	technique	in	which	we	mix	the	colors
proportionally	to	the	opacity	of	the	color	in	the	top.	This	means
for	example,	that	if	we	want	to	render	a	red	color	that’s	70%
opaque	(That	would	be	(1,	0,	0,	0.7) ),	we	want	to	use	70%	of
that	red,	and	30%	of	the	existing	color.	In	order	to	do	this,	we’ll
have	to	configure	blending	with:

Blend	SrcAlpha	OneMinusSrcAlpha

If	we	take	a	look	at	the	mathematical	function	that	results
from	this	Blend 	command,	we’ll	understand	why	this	works.

FinalColor	=	SrcColor	*	SrcAlpha	+	DstColor	*	(1	-	SrcAlpha)

You	can	see	why	this	works,	right?	Using	SrcColor 	as	(1,0,0)
and	Alpha	0.7 	as	in	the	previous	example,	we’re	multiplying	the
red	color	by	0.7 	and	the	existing	color	by	1	-	0.7 ,	which	is	0.3 .

Let’s	take	a	look	at	an	image	with	transparency	without	Alpha
Blend	applied:



The	problem	is	that,	since	alpha	is	not	being	honored,	you	see
the	background	as	a	color.	Let’s	add	Alpha	Blending	to	it.



Now	we	can	properly	see	the	image	because	the	transparent
sections	are	rendered	as	such.

Unity	also	has	a	specific	Render	Queue	for	transparent	objects,
so	that	they’re	rendered	after	opaque	ones.	This	is	a	rendering
technique	used	to	allow	for	optimizations	at	the	engine	level	on
opaque	objects,	we	don’t	care	too	much	about	it	for	now.	To	set
this	up,	you	want	to	add	some	Tags	inside	the	SubShader 	block:

Tags	{
		"Queue"	=	"Transparent"
		"RenderType"="Transparent"
}

If	we	use	Sprites	this	is	done	automatically,	but	if	we	use	a
MeshRenderer	with	a	Quad	or	some	other	mesh,	which	is
actually	really	useful,	we’ll	have	to	write	this.

You’ll	need	an	image	with	an	Alpha	channel,	and	translucent
pixels	to	test	this	out.	The	cool	part	is	that	this	will	work	with	any
mesh	we	want,	so	if	we’re	creating	some	strange	topology	we
can	add	transparency	to	it	with	just	a	few	lines	of	code,	which	is
awesome.

Exercise	2:	Blending	Modes

You	made	it	to	the	second	exercise!	This	is	exciting,	now	you
have	enough	tools	to	work	with	more	than	one	texture,	both	on
a	single	sprite	and	with	the	screen.

In	this	exercise	I’ll	ask	you	to	open	the	scene	called	Exercise	2	-
Blending	modes 	and	go	through	each	of	the	sprites	in	the	screen
(except	the	background)	and	make	them	use	the	blending
mode	that	its	name	suggests.	For	example,	find	the	object	called
Multiply 	and	make	it	use	the	Multiply	blending	mode.	Do	the

http://docs.unity3d.com/Manual/SL-SubShaderTags.html


same	for	Alpha	Blend,	Additive	and	Subtractive.

This	exercise	should	be	easy	and	quick	to	do,	only	remember
to	keep	in	mind	the	blending	equation	that	Unity	uses,	which
was	presented	in	the	previous	sections.

Conclusion

In	this	chapter,	we	learned	how	to	combine	two	or	more	colors
inside	a	shader	and	how	to	mix	the	color	from	our	shader	with
the	existing	colors	in	the	screen	buffer	(the	background).	We	did
that	by	relying	on	Blend 	and	BlendOp 	commands	from	ShaderLab.

If	you	are	curious	about	what	else	can	be	done	with	Blending
Modes	be	sure	to	check	the	2D	Illumination	book	in	this	series.



Where	to	go	now?

Congratulations!	You	now	have	a	solid	foundation	that	will
enable	you	to	go	on	a	much	deeper	learning	career.	Let’s	figure
out	what	you	can	do	next.

Continue	with	the	other	books	in	the	series

This	book	series	is	designed	to	provide	an	introduction	to	2D
Shader	Development.	There	are	three	well-defined	branches
that	you	can	take	now:

2D	Illumination

In	this	book,	you’ll	learn	all	about	how	you	can	create	complex
scenes	using	illumination.	The	book	is	split	in	two,	static	and
dynamic	illumination.

In	the	first	part,	you’ll	learn	how	you	can	effectively	give	the
sensation	of	light	and	shadows	to	all	the	objects	on	the	screen
behind	a	certain	layer.	This	is	a	super	cheap	and	useful	way	to
give	depth	to	your	game.	It	can	also	help	you	reuse	a	lot	of
assets,	by	illuminating	them	in	different	ways	you	break	the
monotony.

The	second	part	is	all	about	how	you	can	create	a	dynamic
light	model	pretty	much	like	the	one	in	3D	but	to	be	used	with
2D	sprites.	For	this,	you’ll	craft	a	separate	texture	with	normals
for	the	sprite	and	use	Unity’s	lights	in	combination	with	it.

Procedural	Texture	Manipulation



In	this	book,	you’ll	learn	a	few	techniques	that	are	used	a	lot	in
computer	graphics	to	manipulate	our	textures	with	code.	You’ll
go	from	a	simple	sine	wave	movement	to	complex
combinations	of	textures	animating	other	textures	and	crazy
stuff	like	that.

You’ll	also	learn	about	noise,	you’ll	use	Perlin	Noise	to	animate
sprites	and	create	noise	inside	a	shader.

Full-Screen	Effects

This	book	is	all	about	creating	screen-space	modifications.
Using	the	rendered	screen	as	an	input	texture	you	can	apply	all
the	stuff	we	learned	in	the	series	to	the	whole	screen,	and	that’s
what	you’ll	do	in	this	book.	You’ll	figure	out	how	Bloom	works,
you’ll	implement	several	effects	like	camera	shake,	retro-looking
filters	like	pixelating,	and	other	useful	things	applying	some	of
the	theory	behind	DSP	(Digital	Signal	Processing).

The	internet

The	second	obvious	option	is	to	search	the	internet	for
examples	of	existing	techniques	you	would	like	to	learn	and	read
articles	about	how	you	can	implement	them.

Reach	out	other	developers	that	have	done	things	you	are
excited	about	and	ask	them	how	they	did	it.	This	could	be	a
major	source	of	learning	material!

Books

I	can’t	recommend	any	books	that	are	specific	about	2D
(That’s	the	reason	why	I’m	writing	this!!!)	but	if	you	think	you’re



ready	to	transfer	the	knowledge	from	3D	to	2D	be	sure	to	check
an	up	to	date	list	in	the	website	for	the	book	at
https://www.2dshaders.com/what-to-do-now



Exercise	Solutions

Exercise	1	Solution

First	of	all,	I	wanted	to	say	thanks	to	the	great	community	at
opengameart.org,	the	background	for	this	exercise	was	taken
from	there	(by	Alucard:	https://opengameart.org/content/city-
background-repetitive-3)	Hopefully,	you	managed	to	get	the
exercise	working	fine	and	you’re	just	validating	your	work.	As
we’ll	see	this	is	not	a	difficult	exercise	at	all.

First	of	all,	I	want	to	say	there	is	a	small	trap	in	the	exercise	to
make	it	more	interesting,	and	there	are	two	right	ways	of	solving
it,	one	more	performant	than	the	other,	in	the	end,	it	won’t
matter	much	in	this	case.	We’ll	analyze	the	least	performant	first.

In	the	project	you	downloaded,	you’ll	find	a	shader	called
EndlessScrollerBackground 	that	is	already	attached	to	a	sprite
through	the	EndlessScrollerBackground 	material.	This	shader	is	a
copy	of	the	Texture	shader	we	created	in	the	book.

The	first	thing	we	want	to	do	is	to	be	able	to	move	that	texture
to	the	left	infinitely,	so	let’s	do	that.

As	you	already	know,	the	UV	coordinates	map	the	texture	to
the	quad	mesh.	So	in	order	to	move	the	texture,	we	need	to
modify	the	UVs	in	some	way.

In	order	to	move	the	texture	to	the	left,	we	can	add	some
value	to	the	x	component	of	the	uv	vector.	This	will	shift	the
texture	proportionally	to	that	amount	we	add.

fixed4	frag	(v2f	i)	:	SV_Target	{



				fixed4	col	=	tex2D(_MainTex,	i.uv	+	float2(0.5,	0.0));
				return	col;
}

Let’s	add	a	float2 ,	with	0.5 	in	the	x 	axis	and	0 	in	the	y 	axis	and
see	what	happens.

Wow,	that	image	is	strange,	right?	Well..	that	is	related	to	the
wrapping	mode	of	the	texture.	Let’s	fix	it,	so	it	does	actually	loop.
Search	for	the	image,	click	on	it,	and,	in	the	inspector,	click
Wrapping	Mode	and	switch	from	Clamp	to	Repeat.	Then	click
Apply.



Now	you	can	see	that	the	image	shifted	correctly.	If	we	change
0.5 	to	whatever	other	value,	we’ll	see	that	the	image	position
changes.

What	we	need	to	do	is	to	modify	that	over	time.	And	here	we
can	use	Unity’s	_Time 	struct.

fixed4	frag	(v2f	i)	:	SV_Target	{
				fixed4	col	=	tex2D(_MainTex,	i.uv	+	float2(_Time.y,	0.0));
				return	col;
}

For	this	to	actually	work,	we	need	to	put	play	in	the	scene	and
yay!	We	got	it	moving!

Half	of	the	thing	is	done.	Now,	what	can	we	do	in	order	to
modify	the	speed	of	this?

The	speed	by	which	this	moves	is	related	to	the	_Time.y 	value.
What	we	need	to	do	is	to	scale	that	value,	and	we	achieve
scaling	by	multiplying	it.	So	let’s	add	a	float	value	multiplied	to



_Time.y .	For	example,	let’s	multiply	it	by	three	and	see	what
happens.

fixed4	frag	(v2f	i)	:	SV_Target	{
				fixed4	col	=	tex2D(_MainTex,	i.uv	+	float2(_Time.y	*	3,	0.0));
				return	col;
}

Wow,	it’s	way	too	fast.	What	if	we	multiply	it	by	0.5 	(which	is
the	same	as	dividing	by	two,	making	it	smaller),

fixed4	frag	(v2f	i)	:	SV_Target	{
				fixed4	col	=	tex2D(_MainTex,	i.uv	+	float2(_Time.y	*	0.5,	0.0));
				return	col;
}

It	goes	slower.	What	about	zero?

fixed4	frag	(v2f	i)	:	SV_Target	{
				fixed4	col	=	tex2D(_MainTex,	i.uv	+	float2(_Time.y	*	0,	0.0));
				return	col;
}

As	we	expect,	it	stopped.

So,	the	thing	here	is	easy,	if	we	multiply	it	by	0 ,	it	stops	moving.
If	we	multiply	it	by	something	greater	than	0 	and	less	than	1 	it
slows	it	down,	by	1 	is	the	default	speed,	and	more	than	1 	it
speeds	it	up.	We	can	actually	make	this	speed	a	parameter	of
the	shader	so	that	we	can	control	it	from	the	editor	or	the	game
itself.

Let’s	add	a	property	called	_Speed 	as	a	float ,	and	make	it	be
one.	so	no	change	by	default.

Properties	{



				_MainTex	(	"Main	Texture",	2D	)	=	"white"	{}
				_Speed	("Speed",	float)	=	1
}

Now	let’s	define	this	float 	in	the	shader.

sampler2D	_MainTex;
float	_Speed;

And	remove	that	constant	we	were	multiplying	by	and	add
this	speed.

fixed4	frag	(v2f	i)	:	SV_Target	{
				fixed4	col	=	tex2D(_MainTex,	i.uv	+	float2(_Time.y	*	_Speed,	0.0));
				return	col;
}

Now	let’s	go	to	the	material,	and	modify	this	variable.	As	you
can	see	the	speed	changes.

We	can	do	a	small	interface	tweak	here,	and	use	a	Range
instead	of	a	float ,	as	the	property	type,	and	set	between	which
values	we	want	to	allow	this	to	work,	in	our	case	going	more
than	5 	or	6 	will	be	too	fast	to	even	see	the	background,	so	let’s
add	a	range	between	0 	and	5 .	So	instead	of	using	float 	as	the
type,	we	have	to	put	Range 	and	two	floats	that	define	the	range.

_Speed	("Speed",	Range(0,6))	=	1

Check	the	new	visual	widget	that	is	now	in	the	inspector.	Now
you	have	This	is	useful	if	you	want	to	set	a	fixed	speed,	but	if	you
want	to	change	the	speed	while	the	game	runs	you’ll	need	to	do
it	in	some	other	way.

This	was	the	first	possible	solution	of	the	shader.	Can	you



identify	why	I	said	there	is	a	slightly	more	efficient	way	of
implementing	it?	It’s	not	something	that	will	matter	in	this
shader,	but	if	you	have	to	do	more	complex	calculations	it	can
save	you	some	good	amount	of	time.	The	problem	is	that	we	are
modifying	the	uv	in	the	fragment	shader.	So	for	each	possible
fragment,	we’re	creating	two	variables	(the	one	we	add	to	i.uv ,
and	the	sum	itself)	and	doing	a	multiply.

This	could	be	achieved	by	doing	the	same	thing,	but	in	the
vertex	shader,	because	we’re	doing	a	linear	operation	that	can
be	interpolated	since	float	addition	is	a	linear	function.	So	let’s
move	it	to	the	vertex	shader.

v2f	vert	(appdata	v)	{
				v2f	o;
				o.position	=	UnityObjectToClipPos(v.position);
				o.uv	=	v.uv	+	float2(_Time.y	*	_Speed,0.0);
				return	o;
}

And	as	you	see	it	works	just	as	well.	If	you	got	a	little	bit	lost,
you	may	be	wondering	why	is	this	faster?	The	reason	is	that	the
vertex	shader	is	processed	only	once	per	vertex,	in	this	case,	we
have	just	4	vertices,	so	we’ll	do	just	4	multiplications	and	4	sums,
instead	of	one	per	pixel.

As	I	mentioned,	a	sum	and	a	multiplication	are	nothing	to
worry	about,	it	will	work	super	fast	either	way,	but	if	we	were
doing	something	more	complex,	we	could	speed	up	our
rendering	by	only	processing	this	in	the	vertex	shader	and	let
the	rasterization	step	interpolate	the	values.

I’d	like	to	suggest	you	go	ahead	and	jump	into	the	forums	if
you	feel	lost	on	the	additional	exercise,	or	just	to	help	other
fellow	students.	I’ll	be	around	to	help	there	too.



Exercise	2	Solution

This	exercise	was	about	implementing	four	blending	modes.
Open	Exercise	2	-	Blending	Modes 	and	you’ll	find	4	shaders:	Multiply
shader,	then	the	Alpha	Blend 	shader,	Additive 	and	finally
Subtractive .	There	are	also	4	corresponding	materials	with	their
shaders	and	textures	attached	to	them.

All	of	these	blending	modes	have	to	be	implemented	using
the	Blend 	and	BlendOp 	commands.	You	can	check	the	reference
manual	for	this	commands	to	get	all	the	possible	options	you
can	use	and	combine.

Multiply

For	the	Multiply	blend	mode,	we	want	to	take	a	look	at	the
default	formula	for	the	Blend 	operation.	Remember	that:

Blend	SrcFactor	DstFactor



Represents:

Color	=	SrcColor	*	SrcFactor	+	DstColor	*	DstFactor

In	this	case,	what	we	want	to	end	up	since	we	need	multiply
blend,	is

Color	=	SrcColor	*	DstColor

So,	what	we	need	to	do	is	to	use	DstColor 	as	the	first	parameter
of	the	Blend 	command,	and	Zero 	as	the	second	one.	In	that	way,
the	second	part	of	the	equation	disappears	and	the	first	one
ends	up	as	we	expected.

Alpha	Blending

The	next	mode	is	Alpha	Blending,	which	is	achieved	using

Blend	SrcAlpha	OneMinusSrcAlpha

Go	back	to	the	Alpha	Blending	chapter	if	you	don’t	remember
why	this	is	done	this	way.

Additive

Now	we	have	Additive,	which	is	the	easiest	one.	If	you	take	a
look	at	the	equation

Color	=	SrcColor	*	SrcFactor	+	DstColor	*	DstFactor



It’s	pretty	much	obvious	that	SrcFactor 	and	DstFactor 	have	to	be
one,	in	order	for	the	colors	to	be	added.	So,	the	solution	is

Blend	One	One

Subtractive

Now	for	the	Subtractive,	we	need	to	change	the	operation	in
the	middle	of	the	Blending	equation,	the	plus	between	both
terms.	For	that,	we	have	to	use	the	BlendOp 	command.	In	this
case,	we	want

Blend	One	One
BlendOp	Sub

which	will	end	up	subtracting	both	colors.	Notice	that	you
could	use	RevSub 	if	you	want	to	invert	the	order	of	terms	in	the
equation.

Result

In	the	end,	it	should	look	like	this:





Appendix	I:	Linear	Interpolation

Mathematically	speaking,	Linear	Interpolation	is	a	method
used	to	define	a	straight	line	between	two	points.	It’s	a	simple
mathematical	function:

float	lerp(float	a,	float	b,	float	w){
		return	w	*	a	+	(1-w)	*	b;
}

Let’s	analyze	it.	The	method	lerp	(from	_L_inear
int_ERP_olation)	receives	three	values,	a 	and	b ,	in	this	case,	are
float ,	but	they	could	be	any	type	that	supports	addition	and
multiplication.	Then	we	have	w 	(weight),	which	is	a	parameter
that	goes	between	0 	and	1 .

You	can	find	all	the	values	that	are	in	between	a 	and	b ,	by
passing	incremental	values	of	w .	For	example:

lerp(10,	20,	0)	//	returns	10
lerp(10,	20,	1)	//	returns	20
lerp(10,	20,	0.5)	//	returns	15

There	is	no	more	magic	to	it	than	this,	it’s	just	a	matter	of
internalizing	the	formula	and	understanding	how	it	works.
When	we	work	on	our	shaders,	the	typical	parameters	are	two
colors	(or	texture	fetches)	for	a 	and	b 	and	one	of	the
components	of	the	uv 	vector	for	w .	Also,	the	_Time 	struct	is	a
popular	option	for	the	w 	parameter.	But	keep	in	mind	that	it
could	be	pretty	much	any	value,	or	array	(float2 ,	float3 ,	float4 )
that	can	be	used.	In	fact,	in	Cg,	you	can	even	pass	one	of	these
values	to	the	w 	parameter	for	different	uses.

http://developer.download.nvidia.com/cg/lerp.html


In	the	rasterization	stage,	interpolators	are	used	to	go	from
one	vector	to	another,	step	by	step,	finding	out	which	pixels	are
covered	by	a	given	triangle.	Because	of	this,	we	have	a	fast
hardware	implementation	of	linear	interpolation	that	we	can
use.	This	is	exactly	what	we	do	when	we	set	the	uvs	in	the	vector
shader	and	receive	it	interpolated	in	the	fragment	shader.	We’re
relying	on	the	hardware-accelerated	interpolation	that	comes
bundled	in	the	GPU.	Whenever	you	feel	like	you	can	interpolate
in	the	vector	shader	instead	of	the	fragment	shader,	go	ahead
and	do	it,	it	will	save	you	valuable	computing	time.

If	you	want	a	more	in-depth	(aka.	Mathematical)	explanation
of	Linear	Interpolation,	be	sure	to	check	its	Wikipedia	entry.

https://en.wikipedia.org/wiki/Linear_interpolation


Appendix	II:	HSV	Color	Space

HSV	is	an	alternative	representation	of	the	RGB	color	space.	It
stands	for	Hue,	Saturation,	Value;	and	it’s	a	useful	way	to
represent	colors	closer	to	how	we	perceive	them.	What	do	I
mean	by	that?	How	easy	it	is	for	you	to	give	me	a	halfway
desaturated	red	color	using	RGB.	Not	easy.	The	reason	is	that
there	is	not	a	clear	relationship	between	how	we	perceive	colors
and	these	three	channels.

Instead	of	smashing	our	heads	adding	more	green,	then	blue,
removing	some	red,	just	to	find	that	the	result	is	not	the	kind	of
color	we	need,	we	can	rely	on	this	alternative	representation.
Let’s	analyze	how	it	works.

Hue	represents	the	color	itself.	It’s	a	linear	gradient	that
traverses	the	whole	color	spectrum	from	0 	to	1 .

Saturation	is	the	amount	of	gray	in	the	color.	It	also	goes	from
0 	to	1.	0 .	0 	is	full	gray,	1 	is	no	gray	at	all	(full	color).

Value	(or	Brightness)	represents	how	bright	the	color	is.	It	also
goes	from	0 	to	1 	and	0 	is	full	dark,	and	1 	full	bright.	Keep	in	mind



that	1 	varies	according	to	the	saturation	value.

With	these	three	values,	it’s	easier	to	define	a	color	like	the	one
I	mentioned	before:	a	halfway	desaturated	red	color	could	be
represented	by	something	like	(0,	0.5,	1) 	in	HSV.	Pretty	simple,
right?	Now,	we	know	that	the	GPU	expects	RGB,	so	we	should
be	able	to	go	from	HSV	to	RGB.	Here	are	the	two	methods	you’d
need	to	paste	in	your	shader	if	you	want	to	use	HSV	inside	of	it
(Migrated	to	Cg	from	https://www.laurivan.com/rgb-to-hsv-to-
rgb-for-shaders/):

fixed3	rgb2hsv(fixed3	c)	{
				float4	K	=	float4(0.0,	-1.0	/	3.0,	2.0	/	3.0,	-1.0);
				float4	p	=	lerp(float4(c.bg,	K.wz),	float4(c.gb,	K.xy),	step(c.b,	c.g));
				float4	q	=	lerp(float4(p.xyw,	c.r),	float4(c.r,	p.yzx),	step(p.x,	c.r));
				float	d	=	q.x	-	min(q.w,	q.y);
				float	e	=	1.0e-10;
				return	fixed3(abs(q.z	+	(q.w	-	q.y)	/	(6.0	*	d	+	e)),	d	/	(q.x	+	e),	q.x);
}		

fixed3	hsv2rgb(fixed3	c)	{
				float4	K	=	float4(1.0,	2.0	/	3.0,	1.0	/	3.0,	3.0);
				float3	p	=	abs(frac(c.xxx	+	K.xyz)	*	6.0	-	K.www);
				return	c.z	*	lerp(K.xxx,	clamp(p	-	K.xxx,	0.0,	1.0),	c.y);
}

And	here	how	to	use	it:

fixed4	frag	(v2f	i)	:	SV_Target	{
				fixed3	c_rgb	=	fixed3(0,1,0);	//	Green		
				fixed3	c_hsv	=	rgb2hsv(c_rgb);	//	Green	in	HSV		
				c_hsv.x	=	0;	//	Move	Hue	to	Red			
				c_rgb	=	hsv2rgb(c_hsv);	//	Red	in	RGB			
				return	float4(c_rgb,	1);	//	Return	Red
}



Acknowledgements

This	book	is	the	result	of	a	long	journey	that	included	a	lot	of
people,	and	I’ll	do	my	best	to	include	them	here,	but	I	may	leave
some	people	out.	Sorry	if	I	did.

First	of	all,	I	want	to	thank	my	girlfriend	and	eternal	partner
Aldi,	who’s	always	there	for	me	no	matter	what	crazy	idea	I	have
plans	for.	Thanks	for	all	the	support,	I	love	you	so	much.	Thanks
to	the	rest	of	my	family	too,	my	mom	Elena,	my	siblings	and
their	couples	who	also	helped	in	different	ways.	Jorge	and	Gaby
for	always	being	there	for	us	too.

I	want	to	thank	everyone	involved	in	the	game	development
community	from	Argentina,	especially	my	great	friends	from
Nastycloud	and	Bigfoot	Gaming.

Also	David	Roguin,	Agustin	Cordes	from	Senscape	and	Daniel
Benmergui,	all	the	crew	from	ADVA	who	put	countless	amounts
of	time	in	growing	our	local	industry.

Thanks	to	my	dear	friends	Michael	de	la	Maza,	Diane	Hsiung
and	Julian	Nadel	for	being	of	immense	help	and	support	during
so	many	years.

Last	but	not	least,	all	the	amazing	developers	that	helped
review	the	book	in	its	early	stages:	David	Roguin,	Mauricio	J
Perez,	Gaston	Simonetti,	Dan	Amador,	Juan	Sebastián
Muguruza,	Nahuel	and	Orlando	Almario.

Thank	you	so	much	to	all	of	you,	I’m	eternally	grateful	for	your
time	investment	in	making	this	book	better!

https://twitter.com/nastycloud
http://www.bigfootgaming.net/
https://senscape.io
http://ludomancy.com/
http://adva.vg/
https://twitter.com/nesdavid
https://twitter.com/PeCHe_87
https://twitter.com/elgatodiabolico
https://github.com/danamador
https://twitter.com/orlax22


Credits

The	amazing	cover	design	and	Hidden	People	Club	logo	were
created	by	German	Sanchez	from	Bigfoot	Gaming.	I	can’t	be
more	grateful	for	having	you	on	board,	man.

The	City	Background	for	the	scroller	exercise	downloaded
from	OpenGameArt	and	created	by	Alucard

Nubarron	Icon	(hat	in	the	Blending	Modes	exercise)	created	by
Juan	Novelletto

Dandelion	Fruit	by	Aldana	Gonzalez

http://www.bigfootgaming.net/
https://opengameart.org/
https://opengameart.org/content/city-background-repetitive-3
https://www.artstation.com/juannovelletto
https://www.instagram.com/vegetaldeana/

	Introduction to the series
	Motivation
	I use Unity, why should I bother learning shader programming at all?
	Who are these books for?
	I need help! What can I do?
	Series Overview
	Foundations
	2D Illumination
	Procedural Texture Manipulation Book
	Full Screen Effects Book
	Downloading the source code for the exercises
	Introduction to Shaders
	What is the GPU?
	What is a Shader?
	Conclusion
	Using shaders in Unity
	How to apply a shader in Unity
	Create the main GameObject
	Add a renderer
	Let’s take a look at our shader.
	The structure of a Shader in Unity
	The Shader Command
	The Properties Command
	The SubShader Command
	The Pass Command
	CGPROGRAM and ENDCG
	Is that it?
	Unity’s built-in shaders
	Fragment Shader basics
	What’s the difference between Vertex and Fragment shaders?
	Solid Color: Writing our very first shader from Scratch
	Defining the vertex and fragment methods
	Some required data structures
	The vertex shader method
	The fragment shader method
	Understanding RGBA
	Playing with colors
	The lerp function
	The _Time struct
	The sin function
	UV Mapping
	Quad UV mapping
	Wrapping Modes
	Writing a Shader that displays a Texture
	Main Texture parameter
	Changes to the appdata struct
	Changes to the v2f struct
	Defining the _MainTex variable inside our shader
	The vertex shader
	The fragment shader

